J4 ›› 2009, Vol. 26 ›› Issue (4): 405-412.

• 量子物理 • 上一篇    下一篇

各向异性n维耦合谐振子能量本征值的代数解法

张仲1 周波1 王培吉1 陶冶薇2   

  1. 1.济南大学理学院 济南,250022;
    2.南京邮电大学理学院 南京,210046
  • 收稿日期:2008-09-01 修回日期:2008-11-03 出版日期:2009-07-28 发布日期:2009-06-29
  • 通讯作者: 张仲,男,1960年生,教授,硕士导师。1982年8月毕业于东北师范大学,从事理论物理和磁性材料领域的研究,主持和参加国家自然科学基金、山东省自然科学基金项目多项,发表论文40余篇。 E-mail:ss_zhangz@ujn.edu.cn
  • 基金资助:

    山东省自然科学基金(SzR0704)、山东省教育厅科技发展基金(J2005A02)资助

An algebraic approach to energy eigenvalue of anisotropicn-dimensional coupling harmonic oscillators

ZHANG Zhong1, ZHOU Bo1, WANG Pei-Ji1, Tao-Ye-Wei2   

  1. 1. School of Science, University of Jinan, Shandong jinan 250022; 
    2. School of Science ,Nanjing University of post and Telecommunications,Jiangsu nanjin 210046
  • Received:2008-09-01 Revised:2008-11-03 Published:2009-07-28 Online:2009-06-29

摘要:

耦合谐振子是量子光学中的重要研究问题之一,原因是许多实际物理问题的解决都依赖于耦合谐振子的模型,因此研究耦合谐振子求解的简便方法显得十分必要。本文运用数学上二次型正交化理论构造了一个形式上的变换矩阵,使既有坐标耦合又有动量耦合的各向异性n维耦合谐振子的Hamilton量对角化,求出了其本征值。并应用此方法求解了三维耦合谐振子的本征值,验证了该方法的正确性。由于该方法不需要求出变换矩阵的具体形式,使得运用此方法求解具有对称形式的Hamilton量的本征值问题变得简单、易计算出结果,该方法更具有普遍性,是一种十分有效的代数方法。

关键词: 量子光学, 耦合谐振子, 二次型理论, 能量本征值, 对角化

Abstract:

The study of the Coupled harmonic oscillator is an important problem in quantum optics, because many actual physical problems are dependent on the model of the coupled harmonic oscillator , so studying the easy way to solve the coupled harmonic oscillator appears to be necessary. Through structuring a formal matrix by quadratic orthogonal mathematical theory and letting the Hamilton diagonalization of the n-dimensional anisotropic harmonic oscillators both coordinate and momentum coupling, this obtains its eigenvalue . And applying this method to solve the energy eigenvalue of three-dimensional coupling harmonic oscillator, this verifyied the correctness of the method at the same time. Since the method does not need to derive the concrete form of the transformation matrix, making it simple and easy to calculate the results to the eigenvalue problems of the Hamilton with symmetrical form. This algebraic methods is more universal and more effective.

Key words: quantum optics, coupling harmonic oscillators, quadratic orthogonal mathematical theory, energy eigenvalue, diagonalization

中图分类号: