[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70(13): 1895-1899.
[2] Ekert A K. Quantum cryptography based on Bells theorem [J]. Phys. Rev. Lett., 1991, 67(6): 661-663.
[3] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett., 1992, 69(20): 2881-2884.
[4] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? [J]. Phys. Rev., 1935, 47(10): 777-780.
[5] Schrodinger E. Die gegenwartige Situation in der Quantenmechanik [J]. Naturwissenschaften. 1935, 23(48): 807-812.
[6] Liu Tangkun, Wang Jisuo, Zhan Mingsheng. Squeezing properties of entangled atoms interacting with optical field [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2005, 22(3): 396-401(in Chinese).
[7] Walls D F. Squeezed states of light [J]. Nature(London), 1983, 306(11): 141-146.
[8] Walls D F, Zoller P.Reduced quantum fluctuations in resonance fluorescence [J]. Phys. Rev. Lett., 1981, 47(10): 709-711.
[9] Liu Tangkun. Squeezing properties in system of entangled atoms interacting with optical field of Schroedinger cat state [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2006, 23(5): 641-646 (in Chinese).
[10] Xia Yunjie, Guo Guangcan. Squeezing and entanglement in continuous variable systems [J]. Chin. Phys. Lett., 2004, 21(10): 1877-1880.
[11] Zhang Yongde, Tang Zhong. Quantum transformation theory in fermion Fock space [J]. J.Math. Phys., 1993, 34(12): 5639-5645.
[12] WangXiangbin, YuSixia, ZhangYongde. Linear quantum transformation and normal product calculation of boson exponential quadratic operators [J]. J. Phys. A, 1994, 27(19): 6563-6569.
[13] Ma Lei, Zhang Yongde. Linear quantum transformation in multi-mode fermion Fock space and its applications[J]. Nuovo Cimento B, 1995, 110(9): 1103-1109.
[14] Zhang Yongde, Tang Zhong. Linear quatum transform theory in Bargmann-Fock space and its preliminary applications [J]. Commun. Theor. Phys.(理论物理通讯), 1995, 23(1): 57-64.
[15] Zhang Yongde, Ma Lei, Wang Xiangbin, et.al., Two application of linear quantum transformation theory in multi-mode Fock space [J]. Commun. Theor. Phys.(理论物理通讯), 1996, 26(2): 203-206.
[16] Ma Lei. Some studies on quantum transformation theory in multi-mode Fock space, Doctoral Dissertation [D]. University of Science and Technology of China, 1995 (in Chinese).
[17] Lu Huaixin. Some studies on quantum information theory for continuous variables, Doctoral Dissertation [D]. University of Science and Technology of China, 2003 (in Chinese).
[18] Lu Wenhua, Lu Huaixin. Quantum nonlocality and entanglement for a two-mode squeezed vacuum state in a phase damping channel [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2005, 22(2): 196-199.
[19] Dai Fangwen , Ma Lei. Calculation of entanglement entropy for continuous-variable entangled state based on general two-mode boson exponential quadratic operator in Fock space [J]. Commun. Theor. Phys. (理论物理通讯), 2008, 49(3): 590-594.
[20] Zhou Yuxin, Xia Qingfeng, Sun Changyong. Quantum entanglement in system of two-mode squeezed vacuum state interacting with Bose-Einstein condensate [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2008, 25(3): 312-316 (in Chinese).
[21] Fan Hongyi, Fan Yun. Relationship between squeezing and entangled state transformations[J]. J. Phys. A, 2003, 36: 5319-5332. |