[1] Bluman G W, Kumei S. Symmetries and Differential Equations [M]. New York: Springer, 1989.[2]Bluman G W, Cheviakov A F, Anco S C. Applications of Symmetry Methods to Partial Differential Equations [M]. New York: Springer, 2010.[3]Benjamin T B. The stability of solitary waves [J]. Proc. Roy. Soc. London A, 1972, 328: 153-183.[4]Noether E. Invariante variationsprobleme [J]. Nachr. Konig. Gesell. Wissen., Gottingen, Math.-Phys. Kl. Heft, 1918, 2: 235-257.[5]Olver P J. Application of Lie Groups to Differential Equations [M]. New York: Springer, 1993.[6]Anco S C, Bluman G W. Direct construction method for conservation laws of partial differential equations, Part I: Examples of conservation laws classifications [J]. Eur. J. Appl. Math., 2002, 13: 545-566.[7]Kara A H, Mahomed F M. Noether-type symmetries and conservation laws via partial Lagrangians [J]. Nonlinear Dynam., 2006, 45: 367-383.[8]Ibragimov N H. A new conservation theorem [J]. J. Math. Anal. Appl., 2007, 333: 311-328.[9]Ibragimov N H. Integrating factors, adjoint equations and Lagrangians [J]. J. Math. Anal. Appl., 2006, 318: 742-757.[10]Ibragimov N H. Quasi-self-adjoint differential equations [J]. Arch. ALGA., 2007, 4: 55-60.[11]Ibragimov N H, Torrisi M, Tracina R. Quasi self-adjoint nonlinear wave equations [J]. J. Phys. A: Math. Theor., 2011, 43: 442001.[12]Gandarias M L. Weak self-adjoint differential equations [J]. J. Phys. A.: Math. Theor., 2011, 44: 262001.[13]Ibragimov N H, Torrisi M, Tracina R. Self-adjointness and conservation laws of a generalized Burgers equation [J]. J. Phys. A: Math. Theor., 2011, 44: 145201.[14]Bruzon M S, Gandarias M L, Ibragimov N H. Self-adjoint sub-classes of generalized thin film equations [J]. J. Math. Anal. Appl., 2009, 357: 307-313.[15]Gandarias M L, Redondo M, Bruzon M S. Some weak self-adjoint Hamilton Jacobi Bellman equations arising in financial mathematics [J]. Nonlinear Anal. RWA., 2012, 13: 340-347.[16]N.H. Ibragimov. Nonlinear self-adjointness and conservation laws [J]. J. Phys. A: Math. Theor., 2011, 44: 432002.[17]Naz R, Mahomed F M, Mason D P. Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics [J]. Appl. Math. Com., 2008, 205: 212-230.[18]Wang T T, Liu X Q, Yu J Q. Symmetries, exact solutions and conservation laws of Caudrey-Dodd-Gibbon-Kotera-Sawada equation [J]. Chinese Journal of Quantum Electronics [J], 2011, 28: 385-390 (in Chinese).[19]Chen M, Liu X Q, Wang M. Exact solutions and conservation laws of symmetric regularized long wave equations [J]. Journal of Quantum Electronics [J], 2012, 29: 21-26 (in Chinese).[20]Zhao J X, Guo B L. Analytical solutions to forced KdV equation [J]. Commun. Theor. Phys., 2009, 52: 279-283.[21]Salas A H. Computing solutions to a forced KdV equation [J]. Nonlinear Anal. RWA., 2011, 12: 1314-1320. |