J4 ›› 2013, Vol. 30 ›› Issue (4): 398-404.

• 量子物理 • 上一篇    下一篇

广义变系数五阶KdV和BBM方程的孤立子解

孙玉珍 王振立 王岗伟 刘希强   

  1. 聊城大学数学科学学院,山东 聊城, 252059
  • 收稿日期:2013-01-21 修回日期:2013-03-01 出版日期:2013-07-28 发布日期:2013-07-06
  • 通讯作者: 刘希强(1957-) 山东菏泽人, 教授, 研究方向为非线性偏微分方程统. E-mail:liuxiq@sina.com
  • 作者简介:孙玉真, 女, 山东聊城人, 副教授, 研究方向为非线性偏微分方程.Email:sunyuzhen@lcu.edu.cn
  • 基金资助:
    National Natural Science Foundation of China and China Academy of Engineering Physics(11076015)

Soliton solutions for generalized fifth-order KdV and BBM equations with variable coefficients

Sun Yu-zhen, Wang Zhen-li, Wang Gang-wei , Liu Xi-qiang   

  1. School of Mathematics Science,Liaocheng University,Liaocheng 252059,China
  • Received:2013-01-21 Revised:2013-03-01 Published:2013-07-28 Online:2013-07-06

摘要: 利用假设孤立波方法,研究了广义变系数五阶KdV方程和BBM方程,得到了广义变系数五阶KdV方程和BBM方程的孤立子解。对于得到的孤立子解,为了保证解的存在性,给出了孤立子解存在的条件。

关键词: 孤立子, 假设方法, 变系数, 五阶KdV方程, BBM方程

Abstract: The wave soliton ansatz was performed for both the generalized fifth-order KdV and BBM equations. The soliton solutions for both the generalized ?fth-order KdV and BBM equations are given. For the soliton solutions, to guarantee the existence of the above soliton solutions, the conditions of existence of soliton solutions are presented.

Key words: solitons, ansatze method, variable coefficients, fifth-order KdV equation, BBM equation

中图分类号: