Fan E G.Extended tanh-function method and its applications to nonlinear equations [J].Phys. Lett. A,2000,277:212-218.Wang M L,Zhou Y B, Li Z B.Applications of a homogeneous balance method to exact solutionsof nonlinear equations in mathematical physics [J].Phys.Lett.A,1996,216:67-75.Liu S K,Fu Z T,Liu S D,et al.Jacobi elliptic function expansion method and periodic wavesolutions of nonlinear wave equations [J]. Phys.Lett.A,2001,289:69-74.Zhang J L,Wang M L, Li X Z.The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrodinger equation [J]. Phys. Lett. A, 2006, 357: 188-195.Wang M L, Li X Z. Applications of F-expansion to periodic wave solutions for a newHamiltonian amplitude equation [J], Chaos, Solitons Fract, 2005, 24: 1257-1268.Wazwaz A M. Distinct variants of the KdV equation with compact and noncompact structures [J], Appl. Math. Comput. 2004, 150: 365-377.Wazwaz A M. Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method [J], Nonlinear Dyn. 2008, 52: 1-9.Yan Z Y. Generalized method and its application in the higher-order nonlinearSchrodinger equation in nonlinear optical fibres [J], Chaos, Solitons Fractals, 2003, 16: 759-766.Kudryashov N A. Simplest equation method to look for exact solutions of nonlinear differential equations [J], Chaos, Solitons Fract, 2005, 24: 1217-1231.Kudryashov N A. Exact Solitary Waves of the Fisher Equation [J], Physics Letters A, 2005, 342: 99-106.Wang M L, Li X Z, Zhang J L. The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J]. Physics Letters A, 2008, 372: 417-423.Yang L J, Yang Q F, Du X Y. New exact solutions of Broer-Kaup-Kupershmidt equation [J]. Chinese Journal of Quantum Electronics, 2011, 29 (2): 142-146.Li N, Liu X Q. New explicit solutions of generalized (3+1)-dimensional higher-order Kadomtsov-Petviashivilli equation [J]. Chinese Journal of Quantum Electronics, 2013, 30 (4): 391-397.Sun Y Z, Wang Z L, Wang G W, Liu X Q. Soliton solutions for generalized fifth-order KdV and BBM equatins with varible coefficients [J]. Chinese Journal of Quantum Electronics, 2013, 30 (4): 398-404.Sudao Bilige, Temuer Chaolu. An extended simplest equation method and its application to several forms of the fifth-order KdV equation [J]. Appl. Math. Comput. 2010, 216: 3146-3153.Sudao Bilige, Temuer Chaolu, Xiaomin Wang. Application of the extended simplest equation method to the coupled Schrodinger-Boussinesq equation [J]. Appl. Math. Comput. 2013, 224: 517-523.Whitham G B. Variational methods and applications to water waves [J]. Proceedings of the Royal Society of London A, 1967, 299(1456): 6-25.Kaup D J. A higher order water wave equation and method for solving it [J]. Prog. Theor. Phys. 1975, 54: 369-408.Broer L J F. Approximate equations for long water waves. Applied Scientific Research [J], 1975, 31(5): 377-395.Sachs R L. On the integrable variant of the Boussinesq system, Painleve property, rational solutions, a related many body system, and equivalence with the AKNS hierarchy [J]. Physica D, 1988, 30(1): 1-27.Kupershmidt B A. Mathematics of dispersive waterwaves [J]. Communications in Mathematical Physics, 1985, 99: 51-73.Zhou Y B, Li C. Application of modified (G'/G)-expansion method to traveling wave solutions for Whitham-Broer-Kaup-Like equations [J]. Commun. Theor. Phys., 2009, 51(1): 664-670.Guo S M, Zhou Y B. The extended (G'/G)-expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations [J]. Appl. Math. Comput. 2010, 215: 3214–3221.Tan F G. New Exact Traveling Wave Solutions of Whitham-Broer-Kaup-Like Equation [J]. Journal of Inner Mongolia University (Natural Science Edition), 2011, 42(2): 133-140.Tan F G, Sudao Bilige. More General Exact Solutions of Whitham-Broer-Kaup-Like Equation [J]. Journal of Inner Mongolia University (Natural Science Edition), 2011, 42(3): 258-264. |