[1] Bouwmeester D, Ekert A, and Zeilinger A. The physics of quantum information [M]. Berlin:Springer, 2000.
[2] Esteve D, Raimond J M and Dalibard J. Quantum entanglement and information processing [M]. Amsterdam:Elsevier, 2003.
[3] Joshi C, Larson J, Jonson M, et al. Entanglement of distant optomechanical systems [J].phys. Rev. A, 2012, 85:033805.
[4] vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field [J]. Phys. Rev. Lett, 2007, 98:030405.
[5] Huang S and Agarwal G S. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity [J]. Phys. Rev. A, 2009, 80:033807.
[6] Liao J Q and Law C K. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics [J]. Phys. Rev. A, 2011, 83:033820.
[7] Miao H, Zhao C, Ju L, et al. Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions [J]. Phys. Rev. A, 2009, 79:063801.
[8] Caves C M. Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer [J]. Phys. Rev. Lett, 1980, 45:75.
[9] Corbitt T, et al. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity [J]. Phys. Rev. A, 2006, 74:021802.
[10] Zhou Ling, Han Yan, et al. Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence [J]. Phys. Rev. A, 2011, 83:052117.
[11] Xiao Rui-jie, Pan Gui-xia, and Zhou Ling. Entanglement of two movable mirrors and two-mode cavity fields generated by a single four-level atom [J]. Phys. J. D, 2013, 30519.
[12] Ma Yong-Hong and Zhou Ling. Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms [J]. J. Appl. Phys, 2012, 111:103109.
[13] Scully M O and Zubairy M S. Quantum Optics [M].Cambridge Univ. Press, 1997.
[14] Dejesus E X and Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations [J]. Phys. Rev. A, 1998, 35:5288.
[15] Adesso G, et al, Extremal entanglement and mixedness in continuous variable systems [J]. Phys. Rev. A, 2004,70:022318.
[16] Simon R. Peres-Horodecki Separability Criterion for Continuous Variable Systems [J]. Phys. Rev. Lett. 2000 84:2726.
[17] Gr?blscher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field [J]. Nature (London) 2009, 460:724.
[18] Genes C, Mari A, Tombesi P, et al. Robust entanglement of a micromechanical resonator with output optical fields [J]. Phys. Rev. A 2008, 78:032316.
[19] Huang S and Agarwal G S, Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light [J]. New J. Phys, 2009, 11: 103044.
[20] Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator [J]. Nature (London) 2006, 443:671.
[21] Gigan S, B?hm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure [J].Nature (London) 2006, 444:67–70.
[22] Marquardt F, Chen J P, Clerk A A, et al. Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion [J]. Phys. Rev. Lett, 2007, 99:093902.
|