[1] Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Korteweg-de Vries equation[J]. Physics Review Letters, 1967, 19: 1095-1097.
[2] Ablowitz M J, Segur H. Solitons and the inverse scattering transformation[M]. SIAM, Philadelphia, PA, 1981.
[3] Matsuno Y. Bilinear transformation method[M]. Academic Press, Inc., London, 1984.
[4] Rogers C, Schief W K. B?cklund and Darboux transformations: geometry and modern applications in soliton theory[M]. Cambridge University Press, Cambridge, 2002.
[5] Gu C H, Hu H S, Zhou Z X. Darboux transformation in soliton theory and its geometry applications[M]. Shanghai Scientific Technical Publishers, Shanghai, 1999.
[6] Wang X, Chen Y. Darboux transformations and N-soliton solutions of two (2+1)-dimensional nonlinear equations[J]. Communications in Theoretical Physics, 2014, 61: 423-430.
[7] Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J]. Physics Review Letters, 1971, 27: 1192-1194.
[8] Hirota R. The direct method in soliton theory[M]. Cambridge University Press, Cambridge, 2004.
[9] Hu X B, Wang H Y. New type of Kadomtsev-Petviashvili equation with self-consistent sources and its bilinear B?cklund transformation[J]. Inverse Problems, 2007, 23: 1433-1444.
[10] Xu X G, Meng X H. Integrable properties for a generalized non-isospectral and variable-coefficient Korteweg-de Veris model[J]. Modern Physics Letters B, 2010, 24: 1023-1032.
[11] Wang M L, Zhou Y B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Physics Letters A, 1996, 216: 67-75.
[12] Lou S Y and Tang X Y. Nonlinear methods of mathematical physics[M]. Scientific Publishers, Beijing, 2006.
[13] Liang Y Q, Wei G M, Li X N. New variable separation solutions and nonlinear phenomena for the (2+1)-dimensional modified Korteweg-de Vries equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16: 603-609.
[14] Xu G Q. A note on the Painlevé test for the nonlinear variable-coefficient PDEs[J]. Computer Physics Communications, 2009, 180: 1137-1144.
[15] Wei G M, Gao Y T, Meng X H, Zhang C Y. Painlevé property and new analytic solutions for a variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation[J]. Chinese Physics Letters, 2008, 25: 1599-1602.
[16] Wang L, Xian D Q. Homoclinic breather-wave solutions, periodic-wave solutions and kink solitary-wave solutions for CDGKS equations[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2012, 29: 417-420 (in Chinese).
[17] Wang Z L, Liu X Q. Symmetry reduction and exact solutions of generalized fourth-order dispersive equation[J]. Chinese Journal of Quantum Electronics, 2014, 31: 264-272.
[18] Wazwaz A M. Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation[J]. Applied Mathematics and Computation, 2008, 200: 437-443.
[19] Taghizadeh N, Mirzazadeh M, Farahrooz F. Exact solutions of the modified KdV-KP equation and the Burgers-KP equation by using the first integral method[J]. Applied Mathematical Modelling, 2011, 35: 3991-3997. [20] Xu B. New solutions of the generalized Burgers-KP equation[J]. Journal of Liaocheng University (Nat. Sci.) , 2009, 22: 09-12.
|