J4 ›› 2018, Vol. 35 ›› Issue (2): 191-196.

• 量子光学 • 上一篇    下一篇

二维新型函数光子晶体带隙结构的研究

刘晓静,张斯淇, 梁 禺,马 季,李 宏,孟祥东,吴义恒   

  1. 1吉林师范大学物理学院, 吉林 四平136000; 2吉林大学物理学院, 吉林 长春130012; 3东北师范大学物理学院, 吉林 长春130012; 4安庆师范学院物理与电气工程学院,安徽 安庆 246133
  • 收稿日期:2016-09-26 修回日期:2016-11-01 出版日期:2018-03-28 发布日期:2018-03-30
  • 通讯作者: 孟祥东(1975~),吉林,博士,教授,从事光子晶体研究,E-mail: siqizhang88@163.com
  • 作者简介: 刘晓静(1982~),女,吉林,博士,讲师,从事光子晶体研究,E-mail: phypaper@163.com
  • 基金资助:
    supported by the National Natural Science Foundation of China (Grant No. 61275047) and the Scientific and Technological Development Foundation of Jilin Province ( 20130101031JC )

Band gap structure of two-dimensional new-type function photonic crystals

LIU Xiaojing1,ZHANG Siqi2, LIANG Yu1,MA Ji1, LI Hong3,MENG Xiangdong1*,WU Yiheng4   

  1. 1 Institute of Physics, Jilin Normal University, Siping 136000, China; 2 Institute of Physics, Jilin University, Changchun 136012, China; 3 Institute of Physics, Northeast Normal University, Changchun 136012, China; 4 School of Physics and Electronic Engineering, Anqing Normal University, Anqing 246133, China
  • Received:2016-09-26 Revised:2016-11-01 Published:2018-03-28 Online:2018-03-30

摘要: 用平面波展开法研究了二维函数光子晶体的带隙结构,其介质柱折射率为空间坐标函数。对TE和TM波带隙结构进行了数值分析,并与二维常规光子晶体(即介质柱折射率为常数)带隙结构进行了比较。研究了介质柱半径 、函数系数 和参数 对二维函数光子晶体带隙结构的影响,结果表明:通过改变 、 、 的取值,可实现对二维函数光子晶体带隙的调节;二维函数光子晶体存在绝对带隙及半Dirac点。这些结论为光子器件设计提供了新的理论依据。

关键词: 二维函数光子晶体;带隙结构;绝对带隙;半Dirac点

Abstract: The band gap structure of two-dimensional function photonic crystals is investigated with plane wave expansion method, and the refractive index of dielectric cylinder is space coordinate function. Band gap structure of TE and TM waves is analyzed numerically, and which is compared with two-dimensional conventional photonic crystals (the medium columns refractive index are constants). Influences of medium column radius , function coefficient and parameter on band gap structure of two-dimensional function photonic crystals are investigated. Results show that the band gap adjustment of two-dimensional function photonic crystals can be realize by changing the values of , and . There are absolute band gaps and semi-Dirac points in two-dimensional function photonic crystals. The conclusions provide a new theoretical basis for the design of optics devices.

Key words: two-dimensional function photonic crystals; band gap structure; absolute band gap; semi-Dirac points