J4 ›› 2018, Vol. 35 ›› Issue (2): 156-164.

• 图像与信息处理 • 上一篇    下一篇

基于局部极值分解耦合显著特征的医学图像融合算法

刘 为, 唐存琛   

  1. 1 武汉商学院信息工程学院,湖北 武汉 430056; 2 武汉大学国际软件学院,湖北 武汉 430079
  • 收稿日期:2017-04-17 修回日期:2017-10-24 出版日期:2018-03-28 发布日期:2018-03-30
  • 通讯作者: 唐存琛(1960-),湖北武汉人,博士,教授,博士生导师,主要从事计算机图像,数字媒介,模式识别等方面的研究。
  • 作者简介:刘 为(1983-),湖北武汉人,硕士,讲师,主要从事图像处理,多媒体技术方面的研究。 E-mail: WLiuWei1983inf@163.com
  • 基金资助:
    Supported by National Natural Science Foundation of China(国家自然科学基金, 61572368), Natural Science Foundation of Hubei Province(湖北省自然科学基金, 2015CFB019)

Medical image fusion algorithm based on salient features coupling local extreme decomposition

LIU Wei, TANG Cunchen   

  1. 1 College of Information Engineering, Wuhan Business University, Wuhan 30056, China; 2 College of International Software, Wuhan University, Wuhan 430079, China
  • Received:2017-04-17 Revised:2017-10-24 Published:2018-03-28 Online:2018-03-30

摘要: 针对当前多模态医学图像融合方法中功能与结构信息互补性不强,易出现边缘失真与轮廓模糊等现象,提出了基于局部极值分解耦合显著特征的医学图像融合方案。引入局部极值,将源图像在不同尺度下分解为一系列的平滑与细节子图像;利用Canny算子获得边缘显著加权映射,以保持源图像的结构信息,并通过上下文感知算子来输出色彩显著加权映射,提取色彩与亮度信息;分别定义基于边缘和色彩的显著特征函数,将其作为加权映射系数的融合准则,得到平滑与细节融合图像;对平滑与细节图像进行重构,形成新图像。结果表明与当前融合技术相比,在CT图像与MRI图像、CT图像与PET图像融合中,所提方法得到的边缘与轮廓更清晰,细节更丰富。提出算法具有较高的融合质量,在医学、遥感与红外探测等领域有一定的应用价值。

关键词: 图像处理;医学图像融合;局部极值;边缘显著特征;色彩显著特征;加权映射

Abstract: In view of the fact that the complementarily of functional and structural information is not strong in the multimodal medical image fusion method, which easily appears the phenomenon of edge distortion and contour blur, a medical image fusion scheme based on the salient features coupling local extreme value decomposition is proposed. The local extremum is introduced to decompose the source image into a series of smoothing sub-images in different scales. Canny operator is used to obtain the edge weighted mapping to keep the structure information of source image. The color perception mapping is extracted by the context aware operator. The fusion criterion based on the edge and color saliency feature functions as the weighted mapping coefficients are defined respectively to get smooth and detail fusion image. A new image is reconstructed from the smooth and detail image. Experimental results show that in CT and MRI, CT and PET image fusion, the edges and contours obtained by the proposed method are clearer and richer in details compared with the current fusion algorithm. The proposed algorithm has good fusion quality which has certain application value in the fields of medicine, remote sensing and infrared detection.

Key words: image processing; medical image fusion; local extreme; edge saliency features; color saliency feature; weighted mapping

中图分类号: