[1] Atkinson R, Aery J. Atmospheric chemistry of biogenic organic compounds [J]. Acc. Chem. Res., 1998, 31(9): 574-583. [2] Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry, organic species: Supplement VII [J]. J. Phys. Chem. Ref. Data., 1999, 28(2): 191-393. [3] Jenkin M E, Clemitshaw K C. Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer [J]. Atmos. Environ., 2000, 34(16): 2499-2527. [4] Trainer M, Williams E J, Parish D D, et al. Models and observations of the impact of the nature hydrocarbons on rural ozone [J]. Nature, 1987, 329: 705-707. [5] Simpson D, Guenther A, Hewitt C N, et al. Biogenic emissions in Europe: 1. Estimates and uncertainties [J]. J. Geophys. Res., 1995, 100(D11): 22875-22890. [6] Paulot F, Crounse J D, Kjaergaard H G, et al. Unexpected epoxide formation in the gas-phase photooxidation of isoprene [J]. Science, 2009, 325(5941): 730-733. [7] Arakawa R. Mass spectral study of ionized-hydroxyacetone dissociation [J]. Bull. Chem. Soc. Jpn., 1991, 64(3): 1022-1024. [8] Wu Y, Xie D, Xue Y. Ab initio studies for the photodissociation mechanism of hydroxyacetone [J]. J. Comput. Chem., 2003, 24(8): 931-938. [9] Espinosa-García J, Dóbé S. Theoretical enthalpies of formation for atmospheric hydroxycarbonyls [J]. J. Mol. Struct.-Theochem., 2005, 713(1-3): 119-125. [10] Chowdhury P K, Upadhyaya H P, Naik P D, et al. ArF laser photodissociation dynamics of hydroxyacetone: LIF observation of OH and its reaction rate with the parent [J]. Chem. Phys. Lett., 2002, 351(3-4): 201-207. [11] Zhou Z Y, Guo H J, Qi F. Recent developments in synchrotron vacuum ultraviolet photoionization coupled to mass spectrometry [J]. Trends Anal. Chem., 2011, 30(9): 1400-1409. [12] Wang S S, Kong R H, Shan X B, et al. Performance of the atomic and molecular physics beamline at the National Synchrotron Radiation Laboratory [J]. J. Synchrotron Rad., 2006, 13(6): 415-420. [13] Chen J, Cao M Q, Wei B, et al. Vacuum ultraviolet photoionization mass spectrometric study of cyclohexene [J]. J. Mass. Spectrom., 2016, 51(2): 169-181. [14] Zhang Q, Cao M Q, Li Y Q, et al. Experimental and theoretical progress of hydrogen clusters [J]. Chinese journal of Quantum Electronics (量子电子学报), 2014, 31(5): 513-519 (in Chinese). [15] Vereecken L, Francisco J S. Theoretical studies of atmospheric reaction mechanisms in the troposphere [J]. Chem. Soc. Rev., 2012, 41(19): 6259-6293. [16] Curtiss L A, Raghavachari K, Redfern P C, et al. Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J]. J. Chem. Phys., 1998, 109(18): 7764-7776. [17] Curtiss L A, Redfern P C, Raghavachari K, et al. Gaussian-3 theory: A variation based on third-order perturbation theory and an assessment of the contribution of core-related correlation [J]. Chem. Phys. Lett., 1999, 313(3-4): 600-607. [18] Baboul A G, Curtiss L A, Redfern P C, et al. Gaussian-3 theory using density functional geometries and zero-point energies [J]. J. Chem. Phys., 1999, 110(16): 7650-7657. [19] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision D.01, Wallingford, CT: Gaussian Inc. (2013). [20] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, http://webbook.nist.gov., (accessed April 2, 2017). [21] Taatjes C A, Liu F, Rotavera B, et al. Hydroxyacetone production from C3 criegee intermediates [J]. J. Phys. Chem. A, 2017, 121(1): 16-23. [22] Liu F Y, Li C X, Wu G H, et al. Experimental and theoretical studies of the VUV photoionization of chloropropylene oxide [J]. J. Phys. Chem. A, 2001, 105(103): 2973-2979. [23] Sheng L S, Qi F, Tao L, et al. Experimental and theoretical studies of the photoionization and dissociative photoionizations of vinyl chloride [J]. Int. J. Mass. Spectrom. Ion Process., 1995, 148(3): 179-189. [24] Chiang S Y, Bahou M, Sankaran K, et al. Dissociative photoionization of CH2Cl2 and enthalpy of formation of CHCl+: Experiments and calculations [J]. J. Chem. Phys., 2003, 118(1): 62-69. [25] Wilson K R, Belau L, Nicolas C, et al. Direct determination of the ionization energy of histidine with VUV synchrotron radiation [J]. Int. J. Mass. Spectrom., 2006, 249–250: 155-161. [26] Sharma A, Reva I, Fausto R. Matrix-isolation study and ab initio calculations of the structure and spectra of hydroxyacetone [J]. J. Phys. Chem. A, 2008, 112(26): 5935-5946. [27] Sharma A, Reva I, Fausto R. Conformational switching induced by near-infrared laser irradiation [J]. J. Am. Chem. Soc., 2009, 131(25): 8752-8753. [28] Sharma A, Reva I, Fausto R, et al. Conformation-changing aggregation in hydroxyacetone: a combined low-temperature FTIR, Jet, and Crystallographic study [J]. J. Am. Chem. Soc., 2011, 133(50): 20194-20207. [29] Lindenmaier R, Tipton N, Sams R L, et al. Assignment of the fundamental modes of hydroxyacetone using gas-phase infrared, far-infrared, raman, and ab initio methods: Band strengths for atmospheric measurements [J]. J. Phys. Chem. A, 2016, 120(30): 5993-6003. [30] Raabe G, Gais H J, Fleischhauer J. Ab initio study of the effect of fluorination upon the structure and configurational stability of alpha-sulfonyl carbanions: The role of negative hyperconjugation [J]. J. Am. Chem. Soc., 1996, 118(19):4622-4630. [31] Mo Y, Wu W, Song L, et al. The magnitude of hyperconjugation in ethane: A perspective from ab initio valence bond theory [J]. Angew. Chem. Int. Ed., 2004, 43(15):1986-1990. |