J4 ›› 2018, Vol. 35 ›› Issue (5): 603-607.

• 非线性光学 • 上一篇    下一篇

非线性色散对高斯脉冲传输的影响

黄峻堃,张少武,万 冲   

  1. 湖北师范大学物理与电子科学学院,湖北 黄石 435000
  • 收稿日期:2017-06-28 修回日期:2017-08-31 出版日期:2018-09-28 发布日期:2018-09-29
  • 通讯作者: 张少武(1964-),湖北天门人,博士,教授,从事非线性光学方面的研究。 E-mail:1090827061@qq.com
  • 作者简介:黄峻堃(1991-),湖北大冶人,研究生,从事非线性光学方面的研究
  • 基金资助:

    Supported by National Natural Science Foundation of China(自然科学基金, 11404108) ,Graduate Student Research Innovation Fund Project of Hubei Normal University(湖北师范大学研究生创新科研基金项目, 20170134

Influence of nonlinear dispersion on Gauss pulse transmission

HUANG Junkun, ZHANG Shaowu, WAN Chong   

  1. College of Physics and Electronic Science, Hubei Normal University, Huangshi 435000, China
  • Received:2017-06-28 Revised:2017-08-31 Published:2018-09-28 Online:2018-09-29

摘要:

用变分法求解含有三阶、五阶非线性项以及Kerr色散项的非线性薛定谔方程(NLSE)。推导出不同参数下高斯脉冲参量随传播距离的演化方程。结果表明特定条件下,脉冲在一定距离内以呼吸子的形式稳定传播。在较强的Kerr色散效应下,孤子的强度变化会增大,传播过程中波峰变尖。

关键词: 非线性薛定谔方程;高斯脉冲;变分法;Kerr色散

Abstract:

The nonlinear Schrödinger equation (NLSE) including cubic-quintic nonlinearity and Kerr dispersion term is solved by variational method. Evolution equations of Gaussian pulse parameters with propagation distance with different parameters are derived. Results show that under certain conditions, the pulses propagate stably in the form of breather within a certain distance. Under the strong Kerr dispersion effect, the intensity change of solitons will increase, and the peaks will become sharp during propagation.

Key words: nonlinear Schrödinger equation; Gaussian pulse; variational method; Kerr dispersion

中图分类号: