量子电子学报 ›› 2020, Vol. 37 ›› Issue (3): 378-385.

• 半导体光电 • 上一篇    

二维T型三终端量子点阵列的量子输运

罗国忠   

  1. 忻州师范学院物理系, 山西 忻州 034000
  • 收稿日期:2019-09-23 修回日期:2019-12-26 出版日期:2020-05-28 发布日期:2020-05-28
  • 通讯作者: 联系方式 E-mail:luoguozhong2013@163.com
  • 作者简介:罗国忠(1977--),山西忻州人,硕士,副教授,主要从事介观系统量子输运和拓扑绝缘体的量子输运等方面的研究。E—mail:luoguozhong2013@163.com
  • 基金资助:
    Supported by the 13th Five-Year Plan Project of Science and Education of Shanxi Province(山西省教育科学“十三五”规划2017年度项目, GH-17061)

Quantum transport through a two-dimensional T-shaped quantum dot-array of three-terminal system

LUO Guozhong   

  1. Department of Physics, Xinzhou Teachers University, Xinzhou 034000, China
  • Received:2019-09-23 Revised:2019-12-26 Published:2020-05-28 Online:2020-05-28

摘要: 介观系统的量子输运理论为设计和实现具有优良性能的量子器件提供了物理模型和依据。基于紧束缚模型散射区格点上能量波动的二终端系统透射系数的传输矩阵方法,提出了二维T型三终端量子点阵列模型,并将其转化成二终端模型去探讨,分别研究了相对于中间原点的非对称电极和对称电极的T型量子点阵列的电子输运。结果表明:对于非对称的T型量子点阵列,其透射率的尖峰个数与输入端量子点数相等;而对于对称的T型量子点阵列,其透射率的尖峰个数与左右端量子点数相等。此外,透射系数与跃迁积分和量子点数有关,而与量子点宽度无关。

关键词: 量子力学, 量子输运, 传输矩阵, T型, 三终端系统

Abstract: The quantum transport theory of mesoscopic system provides the physical model and basis for the design and implementation of quantum devices with excellent performance。It is presented that a transfer matrix method to calculate various transmission coefficients for two-terminal systems based on tight-banding models with fluctuating on-site energies in the scattering region, then, a two-dimension T-shaped three-terminal quantum dot array model is presented,and then it is reformulated and treated as a standard two-terminal model to study the electron transport of T-shaped quantum dot arrays with asymmetric and symmetric electrodes relative to the middle original point. It is shown that for asymmetric T-shaped quantum dot array, the number of transmission peaks is equal to the number of quantum dots at the input terminal, while for symmetric T-shaped quantum dot array, the number of transmission peaks is equal to the number of quantum dots at the left and right terminal. It is also found that the transmission coefficients is related to the transition integral and the number of quantum dots, but not to the width of quantum dots.

Key words: quantum mechanics, quantum transport, transfer matrix, T-shape, three-terminal system, quantum dot array

中图分类号: