量子电子学报 ›› 2022, Vol. 39 ›› Issue (2): 197-224.doi: 10.3969/j.issn.1007-5461.2022.02.003
• "轨道角动量:从经典光学到量子信息”专辑 II • 上一篇 下一篇
孙亦凡, 陈天, 张卓, 孔令军, 张向东∗
收稿日期:
2021-10-13
修回日期:
2021-12-07
出版日期:
2022-03-28
发布日期:
2022-03-28
通讯作者:
E-mail: zhangxd@bit.edu.cn
E-mail:E-mail: zhangxd@bit.edu.cn
作者简介:
孙亦凡( 1988 - ), 河南人, 博士, 特别副研究员, 主要从事光信息处理与探测方面的研究。E-mail: yfsun@mail.bit.edu.cn
基金资助:
SUN Yifan, CHEN Tian, ZHANG Zhuo, KONG Lingjun, ZHANG Xiangdong∗
Received:
2021-10-13
Revised:
2021-12-07
Published:
2022-03-28
Online:
2022-03-28
摘要: 量子光场的关联性质是量子光学研究的一个重要主题。在对其深入挖掘的过程中, 人们在经典光场关 联性质方面的研究也取得了一系列重要进展。尤其是结合近二十年来在光信息处理方面备受关注的轨道角动 量自由度, 观察到许多与高维量子光关联性质相对应的现象。本综述对轨道角动量光束中的经典光关联相关研 究进行了总结, 介绍了轨道角动量光束中的局域不可分离性及其应用, 对空间可分离轨道角动量光束中的经典 光关联也做了讨论。特别地, 作为一种潜在的量子过程研究平台, 还对基于轨道角动量光束的随机行走研究作 了介绍。
中图分类号:
孙亦凡, 陈天, 张卓, 孔令军, 张向东∗. 轨道角动量光束中的经典光关联及其应用研究[J]. 量子电子学报, 2022, 39(2): 197-224.
SUN Yifan, CHEN Tian, ZHANG Zhuo, KONG Lingjun, ZHANG Xiangdong∗. Classical optical correlation in beam fields with orbital angular momentum and its application[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 197-224.
[1] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring, in Proceedings 35th Annual Symposium on Foundations of Computer Science [C]. IEEE Comput. Soc. Press, 1994, pp. 124–134. [2] G. E. Moore. Cramming More Components onto Integrated Circuits [J]. Electronics, 1965, 38(8). [3] C. H. Bennett, G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing [J]. Theoretical Computer Science, 2014, 560: 7-11. [4] A. K. Ekert. Quantum Cryptography Based on Bell’s Theorem [J]. Phys. Rev. Lett., 1991, 67(6): 661-663. [5] C. H. Bennett, S. J. Wiesner. Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States [J]. Phys. Rev. Lett., 1992, 69(20): 2881-2884. [6] A. Einstein, B. Podolsky, N. Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? [J]. Phys. Rev., 1935, 47(10): 777-780. [7] R. J. C. Spreeuw. Classical Wave-Optics Analogy of Quantum-Information Processing [J]. Phys. Rev. A, 2001, 63(6): 062302. [8] R. J. C. Spreeuw. A Classical Analogy of Entanglement [J]. Foundations of Physics, 1998, 28(3): 361-374. [9] K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, et al. Bell’s Measure in Classical Optical Coherence [J]. Nature Photon, 2012, 7(1): 72-78. [10] J. T. Barreiro, T.-C. Wei, P. G. Kwiat. Beating the Channel Capacity Limit for Linear Photonic Superdense Coding [J]. Nature Physics, 2008, 4(4): 282-286. [11] L. Chen, J. Lei, J. Romero. Quantum Digital Spiral Imaging [J]. Light Sci Appl, 2014, 3(3): e153. [12] X.-L. Wang, Y.-H. Luo, H.-L. Huang, et al. 18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom [J]. Phys. Rev. Lett., 2018, 120(26): 260502. [13] B. N. Simon, S. Simon, F. Gori, et al. Nonquantum Entanglement Resolves a Basic Issue in Polarization Optics [J]. Phys. Rev. Lett., 2010, 104(2): 023901. [14] E. Karimi, R. W. Boyd. Classical Entanglement? [J]. Science, 2015, 350(6265): 1172-1173. [15] X.-F. Qian, J. H. Eberly. Entanglement and Classical Polarization States [J]. Opt. Lett., 2011, 36(20): 4110. [16] X. Song, Y. Sun, P. Li, et al. Bell’s Measure and Implementing Quantum Fourier Transform with Orbital Angular Momentum of Classical Light [J]. Sci. Rep., 2015, 5(1): 14113. [17] X. F. Qian, B. Little, J. C. Howell, et al. Violation of Bell’s Inequalities with Classical Shimony-Wolf States: Theory and Experiment [J]. Quant-Ph, 2014. [18] P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer [J]. SIAM Review, 1999, 41(2): 303-332. [19] D. Bouwmeester, J.-W. Pan, K. Mattle, et al. Experimental Quantum Teleportation [J]. Nature, 1997, 390: 575-579. [20] S. M. Hashemi Rafsanjani, M. Mirhosseini, O. S. Maga?a-Loaiza, et al. State Transfer Based on Classical Nonseparability [J]. Phys. Rev. A, 2015, 92(2): 023827. [21] G. Milione, T. A. Nguyen, J. Leach, et al. Using the Nonseparability of Vector Beams to Encode Information for Optical Communication [J]. Opt. Lett., 2015, 40(21): 4887. [22] G. Milione, M. P. J. Lavery, H. Huang, et al. 4 × 20 Gbit/s Mode Division Multiplexing over Free Space Using Vector Modes and a q-Plate Mode (de)Multiplexer [J]. Opt. Lett., 2015, 40(9): 1980. [23] P. Li, B. Wang, X. Zhang. High-Dimensional Encoding Based on Classical Nonseparability [J]. Opt. Express, 2016, 24(13): 15143. [24] W. Cheng, J. W. Haus, Q. Zhan. Propagation of Vector Vortex Beams through a Turbulent Atmosphere [J]. Opt. Express, 2009, 17(20): 17829. [25] M. McLaren, T. Konrad, A. Forbes. Measuring the Nonseparability of Vector Vortex Beams [J]. Phys. Rev. A, 2015, 92(2): 023833. [26] R. Fickler, R. Lapkiewicz, S. Ramelow, et al. Quantum Entanglement of Complex Photon Polarization Patterns in Vector Beams [J]. Phys. Rev. A, 2014, 89(6): 060301. [27] F. T?ppel, A. Aiello, C. Marquardt, et al. Classical Entanglement in Polarization Metrology [J]. New J. Phys., 2014, 16(7): 073019. [28] S. Berg-Johansen, F. T?ppel, B. Stiller, et al. Classically Entangled Optical Beams for High-Speed Kinematic Sensing [J]. Optica, 2015, 2(10): 864. [29] B. Ndagano, B. Perez-Garcia, F. S. Roux, et al. Characterizing Quantum Channels with Non-Separable States of Classical Light [J]. Nature Physics, 2017, 13(4): 397-402. [30] E. Otte, C. Rosales-Guzmán, B. Ndagano, et al. Entanglement Beating in Free Space through Spin–Orbit Coupling [J]. Light Sci. Appl., 2018, 7(5): 18009. [31] K. F. Lee, J. E. Thomas. Experimental Simulation of Two-Particle Quantum Entanglement Using Classical Fields [J]. Phys. Rev. Lett., 2002, 88(9): 097902. [32] K. F. Lee, J. E. Thomas. Entanglement with Classical Fields [J]. Phys. Rev. A, 2004, 69(5): 052311. [33] Y. Sun, X. Song, H. Qin, et al. Non-Local Classical Optical Correlation and Implementing Analogy of Quantum Teleportation [J]. Sci. Rep., 2015, 5(1): 9175. [34] Z. Yang, Y. Sun, P. Li, et al. Experimental Realization of the Analogy of Quantum Dense Coding in Classical Optics [J]. AIP Advances, 2016, 6(6): 065008. [35] J. T. Barreiro, N. K. Langford, N. A. Peters, et al. Generation of Hyperentangled Photon Pairs [J]. Phys. Rev. Lett., 2005, 95(26): 260501. [36] J. T. Barreiro, T.-C. Wei, P. G. Kwiat. Remote Preparation of Single-Photon “Hybrid” Entangled and Vector-Polarization States [J]. Phys. Rev. Lett., 2010, 105(3): 030407. [37] P. Li, Y. Sun, Z. Yang, et al. Classical Hypercorrelation and Wave-Optics Analogy of Quantum Superdense Coding [J]. Sci. Rep., 2016, 5(1): 18574. [38] E. Karimi, J. Leach, S. Slussarenko, et al. Spin-Orbit Hybrid Entanglement of Photons and Quantum Contextuality [J]. Phys. Rev. A, 2010, 82(2): 022115. [39] T.-C. Wei, J. T. Barreiro, P. G. Kwiat. Hyperentangled Bell-State Analysis [J]. Phys. Rev. A, 2007, 75(6): 060305. [40] Y. Han, G. Li. Coherent Optical Communication Using Polarization Multiple-Input-Multiple-Output [J]. Opt. Express, 2005, 13(19): 7527. [41] G. Li. Recent Advances in Coherent Optical Communication [J]. Adv. Opt. Photon., 2009, 1(2): 279. [42] I. Roudas, A. Vgenis, C. S. Petrou, et al. Optimal Polarization Demultiplexing for Coherent Optical Communications Systems [J]. Journal of Lightwave Technology, 2010, 28(7): 1121-1134. [43] A. C. Dada, J. Leach, G. S. Buller, et al. Experimental High-Dimensional Two-Photon Entanglement and Violations of Generalized Bell Inequalities [J]. Nature Physics, 2011, 7(9): 677-680. [44] D. Collins, N. Gisin, N. Linden, et al. Bell Inequalities for Arbitrarily High-Dimensional Systems [J]. Phys. Rev. Lett., 2002, 88(4): 040404. [45] P. Li, S. Zhang, X. Zhang. Classically High-Dimensional Correlation: Simulation of High-Dimensional Entanglement [J]. Opt. Express, 2018, 26(24): 31413. [46] Y.-F. Huang, C.-F. Li, Y.-S. Zhang, et al. Experimental Test of the Kochen-Specker Theorem with Single Photons [J]. Phys. Rev. Lett., 2003, 90(25): 250401. [47] S. Kochen, E. P. Specker. The Problem of Hidden Variables in Quantum Mechanics [J]. The Logico-Algebraic Approach to Quantum Mechanics, 293-328. [48] G. Kirchmair, F. Z?hringer, R. Gerritsma, et al. State-Independent Experimental Test of Quantum Contextuality [J]. Nature, 2009, 460(7254): 494-497. [49] A. J. Leggett, A. Garg. Quantum Mechanics versus Macroscopic Realism: Is the Flux There When Nobody Looks? [J]. Phys. Rev. Lett., 1985, 54(9): 857-860. [50] Z.-Q. Zhou, S. F. Huelga, C.-F. Li, et al. Experimental Detection of Quantum Coherent Evolution through the Violation of Leggett-Garg-Type Inequalities [J]. Phys. Rev. Lett., 2015, 115(11): 113002. [51] X. Zhang, Y. Sun, X. Song, et al. Realization of Hardy’s Thought Experiment Using Classical Light [J]. J. Opt., 2016, 18(9): 095604. [52] A. Cabello, M. Gu, O. Gühne, et al. Optimal Classical Simulation of State-Independent Quantum Contextuality [J]. Phys. Rev. Lett., 2018, 120(13): 130401. [53] T. Li, Q. Zeng, X. Song, et al. Experimental Contextuality in Classical Light [J]. Sci. Rep., 2017, 7(1): 44467. [54] D. Frustaglia, J. P. Baltanás, M. C. Velázquez-Ahumada, et al. Classical Physics and the Bounds of Quantum Correlations [J]. Phys. Rev. Lett., 2016, 116(25): 250404. [55] P. Kurzyński, A. Cabello, D. Kaszlikowski. Fundamental Monogamy Relation between Contextuality and Nonlocality [J]. Phys. Rev. Lett., 2014, 112(10): 100401. [56] X. Zhan, X. Zhang, J. Li, et al. Realization of the Contextuality-Nonlocality Tradeoff with a Qubit-Qutrit Photon Pair [J]. Phys. Rev. Lett., 2016, 116(9): 090401. [57] T. Li, X. Zhang, Q. Zeng, et al. Experimental Simulation of Monogamy Relation between Contextuality and Nonlocality in Classical Light [J]. Opt. Express, 2018, 26(9): 11959. [58] X. Zhang, T. Li, Z. Yang, et al. Experimental Observation of the Leggett-Garg Inequality Violation in Classical Light [J]. J. Opt., 2019, 21(1): 015605. [59] Y. Aharonov, L. Davidovich, N. Zagury. Quantum Random Walks [J]. Phys. Rev. A, 1993, 48(2): 1687-1690. [60] S. E. Venegas-Andraca. Quantum Walks: A Comprehensive Review [J]. Quantum Inf Process, 2012, 11(5): 1015-1106. [61] E. Farhi, S. Gutmann. Quantum Computation and Decision Trees [J]. Phys. Rev. A, 1998, 58(2): 915-928. [62] T. Chen, X. Zhang. The Defect-Induced Localization in Many Positions of the Quantum Random Walk [J]. Sci. Rep., 2016, 6(1): 25767. [63] T. Chen, X. Zhang. Extraordinary Behaviors in a Two-Dimensional Decoherent Alternative Quantum Walk [J]. Phys. Rev. A, 2016, 94(1): 012316. [64] T. Chen, B. Wang, X. Zhang. Controlling Probability Transfer in the Discrete-Time Quantum Walk by Modulating the Symmetries [J]. New J. Phys., 2017, 19(11): 113049. [65] N. Shenvi, J. Kempe, K. B. Whaley. Quantum Random-Walk Search Algorithm [J]. Phys. Rev. A, 2003, 67(5): 052307. [66] A. M. Childs. Universal Computation by Quantum Walk [J]. Phys. Rev. Lett., 2009, 102(18): 180501. [67] E. Farhi, J. Goldstone, S. Gutmann. A Quantum Algorithm for the Hamiltonian NAND Tree [J]. Theory of Comput., 2008, 4(1): 169-190. [68] H. Tang, C. Di Franco, Z.-Y. Shi, et al. Experimental Quantum Fast Hitting on Hexagonal Graphs [J]. Nature Photon, 2018, 12(12): 754-758. [69] T. Wu, J. A. Izaac, Z.-X. Li, et al. Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs [J]. Phys. Rev. Lett., 2020, 125(24): 240501. [70] N. Pan, T. Chen, H. Sun, et al. Electric-Circuit Realization of Fast Quantum Search [J]. Research, 2021, 2021: 1-8. [71] T. Kitagawa, M. S. Rudner, E. Berg, et al. Exploring Topological Phases with Quantum Walks [J]. Phys. Rev. A, 2010, 82(3): 033429. [72] J. K. Asbóth. Symmetries, Topological Phases, and Bound States in the One-Dimensional Quantum Walk [J]. Phys. Rev. B, 2012, 86(19): 195414. [73] T. Kitagawa, M. A. Broome, A. Fedrizzi, et al. Observation of Topologically Protected Bound States in Photonic Quantum Walks [J]. Nature Communications, 2012, 3(1): 882. [74] L. Xiao, X. Zhan, Z. H. Bian, et al. Observation of Topological Edge States in Parity–Time-Symmetric Quantum Walks [J]. Nature Physics, 2017, 13(11): 1117-1123. [75] T. Chen, B. Wang, X. Zhang. Characterization of Topological Phases and Selection of Topological Interface Modes in the Parity-Time-Symmetric Quantum Walk [J]. Phys. Rev. A, 2018, 97(5): 052117. [76] B. Wang, T. Chen, X. Zhang. Experimental Observation of Topologically Protected Bound States with Vanishing Chern Numbers in a Two-Dimensional Quantum Walk [J]. Phys. Rev. Lett., 2018, 121(10): 100501. [77] B. Wang, T. Chen, X. Zhang. Observation of Novel Robust Edge States in Dissipative Non‐Hermitian Quantum Walks [J]. Laser & Photonics Reviews, 2020, 14(7): 2000092. [78] A. Schreiber, A. Gábris, P. P. Rohde, et al. A 2D Quantum Walk Simulation of Two-Particle Dynamics [J]. Science, 2012, 336(6077): 55-58. [79] S. K. Goyal, F. S. Roux, A. Forbes, et al. Implementing Quantum Walks Using Orbital Angular Momentum of Classical Light [J]. Physical Review Letters, 2013, 110(26): 263602. [80] M. A. Broome, A. Fedrizzi, B. P. Lanyon, et al. Discrete Single-Photon Quantum Walks with Tunable Decoherence [J]. Physical Review Letters, 2010, 104(15): 153602. [81] K. Manouchehri, J. Wang. Physical Implementation of Quantum Walks [M]. Springer Berlin Heidelberg, 2014. [82] P. Xue, H. Qin, B. Tang. Trapping Photons on the Line: Controllable Dynamics of a Quantum Walk [J]. Scientific Reports, 2014, 4(1): 4825. |
[1] | 成科, 胡晓楠, 贺瑜, 孟维佳, 栾海涛, 顾敏, 方心远, . 基于光学衍射神经网络的完美涡旋光 轨道角动量识别[J]. 量子电子学报, 2022, 39(2): 262-271. |
[2] | 吴一京, 余盼盼, 刘易凡, 王自强, 李银妹, 龚 雷, ∗. 聚焦场自旋-轨道角动量相互作用的研究进展[J]. 量子电子学报, 2022, 39(1): 81-95. |
[3] | 樊海豪, 朱刘昊, 台玉萍, 李新忠, ∗. 高阶衍射级光束的轨道角动量[J]. 量子电子学报, 2022, 39(1): 127-135. |
[4] | 姜嘉琪, Carmelo Rosales-Guzman, 朱智涵∗. 完美平顶涡旋光束[J]. 量子电子学报, 2022, 39(1): 136-141. |
[5] | 王磊, 孙晓泉, 叶庆. 波前编码光电成像系统猫眼回波分析[J]. 量子电子学报, 2020, 37(4): 418-429. |
[6] | 刘兴云 杨火祥 刘鑫豪 黄兴林 夏雨婷. 一种基于时间透镜的滤波系统[J]. J4, 2018, 35(5): 544-549. |
[7] | 李亚凯1,2,3, 徐 亮1,3, 金 岭1,3, 李 胜1,3, 叶树彬1,2,3, . 红外干涉信号采样误差分析及修正方法研究[J]. 量子电子学报, 2018, 35(3): 271-277. |
[8] | 陈芬芬, 高闽光,徐 亮. 基于近红外漫反射光谱的盐酸左西替利嗪片判别分析实验研究[J]. J4, 2015, 32(1): 1-7. |
[9] | 龚忠清,孙晓兵, 张荞,洪津. 偏振傅里叶变换红外光谱仪定标研究[J]. J4, 2011, 28(2): 142-146. |
[10] | 王永祥. 矩孔菲涅尔衍射的光强分布[J]. J4, 2010, 27(3): 264-269. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 748
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||