量子电子学报 ›› 2023, Vol. 40 ›› Issue (1): 133-138.doi: 10.3969/j.issn.1007-5461.2023.01.016

• 量子光学 • 上一篇    

一种新型圆形掺杂光子晶体光纤负色散特性的分析

阮志强, 张 磊, 赵欣瑜, 江兴方∗   

  1. ( 常州大学微电子与控制工程学院, 江苏 常州 213164 )
  • 收稿日期:2022-06-13 修回日期:2022-07-24 出版日期:2023-01-28 发布日期:2023-01-28
  • 通讯作者: E-mail: xfjiang@cczu.edu.cn E-mail:E-mail: xfjiang@cczu.edu.cn
  • 作者简介:阮志强 ( 1998 - ), 安徽池州人, 研究生, 主要从事光子晶体光纤色散管理方面的研究。 E-mail: zqruan1@163.com
  • 基金资助:
    国家自然科学基金 (41875026), 江苏省现代光学技术重点实验室开放研究课题 (KJS1405)

Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber

RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗   

  1. ( School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China )
  • Received:2022-06-13 Revised:2022-07-24 Published:2023-01-28 Online:2023-01-28

摘要: 针对目前使用的光纤中普遍存在的色散问题,利用有限元法并结合 COMSOL Multiphysics 仿真软件 设计了一种双芯圆形液体掺杂的光子晶体光纤。研究结果表明,随着空气孔直径 d1 与空气孔层间距 Λ 的比值 d1/Λ 变小,有效折射率的最大变化率和色散逐渐向长波长方向移动;随着中心孔直径 d2 变大,有效折射率 的最大变化率和色散的最小值也逐渐向长波长方向移动;此外,随着掺杂液体折射率 nL 增大,有效折射率 的最大变化率和色散的最小值同样逐渐向长波长方向移动。当 Λ = 1550 µm、d1/Λ = 0.7、d2/Λ = 0.833 以及 nL = 1.753 时, 可在 1550 nm 处获得 −132720 ps·nm−1 ·km−1 的大负色散值。

关键词: 非线性光学, 色散补偿, 光子晶体光纤, 负色散系数

Abstract: Aiming at the ubiquitous dispersion problem in optical fibers currently used, a dual-core circular liquid-doped photonic crystal fiber was designed by using the finite element method and COMSOL Multiphysics simulation software. The results show that as the ratio d1/Λ of the air hole diameter d1 to the air hole layer spacing Λ decreases, the maximum change rate and dispersion of the effective refractive index gradually move to the long wavelength direction. And with the increase of the central hole diameter d2, the maximum change rate of the effective refractive index and the minimum dispersion value also gradually move to the long wavelength direction. In addition, with the increase of the refractive index nL of the doping liquid, the maximum change rate of the effective refractive index and the minimum dispersion rate also show the same changing trend. It is shown that the large negative dispersion value of −132720 ps·nm−1 ·km−1 can be obtained at 1550 nm for Λ = 1550 µm, d1/Λ = 0.7, d2/Λ = 0.833, and nL = 1.753.

Key words: nonlinear optics, dispersion compensation, photonic crystal ?ber, negative dispersion coef?cient

中图分类号: