[1] Jing Xu, Hou Zaihong, Qin Laian, et al. Measurement of whole layer atmospheric coherence length by observing stars in daytime [J]. Infrared and Laser Engineering, 2011, 40(7): 1352-1355(in Chinese). [2] 雷红文, 王虎, 杨旭,等. 太赫兹技术空间应用进展分析与展望[J]. 空间电子技术, 2017, 37(2): 1-8.[3] Wang S, Lu Z, Li W, et al. 26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals[J]. APL Photonics, 2020, 5(5): 056105.[4] Federal Communication Commission (FCC), Report and order and future notice of proposed rulemaking, [DB/OL]. Available: http://apps.fcc.gov/edocspublic/Attachmatch/FCC-16-89A1.pdf.[5] Li Wei. High-speed Photonic Terahertz Wireless Communication System Assisted by Probabilistic Shaping [D]. Hangzhou: Master's Thesis of Zhejiang University, 2020(in Chinese).李伟. 基于概率整形的高速光子太赫兹无线通信系统[D]. 杭州:浙江大学, 2020.[6] Kukutsu N, Hirata A, Kosugi T, et al. 10-Gbit/s wireless transmission systems using 120-GHz-band photodiode and MMIC technologies[C]//2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium. IEEE, 2009: 1-4.[7] Kanno A, Dat P T, Sekine N, et al. Seamless Fiber-Wireless Bridge in the Millimeter- and Terahertz-Wave Bands[J]. Journal of Lightwave Technology, 2016, 34(20):4794-4801.[8] Zhang L, X Pang, Jia S, et al. Beyond 100 Gb/s Optoelectronic Terahertz Communications: Key Technologies and Directions[J]. IEEE Communications Magazine, 2020, 58(11):34-40.[9] Shams H, Fice M J, Balakier K, et al. Photonic generation for multichannel THz wireless communication[J]. Optics Express, 2014, 22(19):23465-72.[10] Yu X, Jia S, Hu H, et al. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band[J]. APL Photonics, 2016, 1(8):371-975618.[11] Yu J, Li K, Chen Y, et al. Terahertz-Wave Generation Based on Optical Frequency Comb and Single Mach-Zehnder Modulator[J]. IEEE Photonics Journal, 2020, 12(1):1-8.[12] 张宇, 颠覆还是融合:太赫兹电子学vs.光子学[DB/OL]. http://www.mwrf.net/news/marketwatch/2017/21218.html.[13] 太赫兹连续波发射源测试比拼UTC-PD VS. PIN-PD[DB/OL]. https://blog.csdn.net/weixin_42303568/article/details/112313638.[14] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104.[15] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s?1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364.[16] Li K, Liu S, Thomson D J, et al. Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying[J]. Optica, 2020, 7(11): 1514-1516.[17] Lu G W, Hong J, Qiu F, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s?1 for energy-efficient datacentres and harsh-environment applications[J]. Nature communications, 2020, 11(1): 1-9.[18] Koch U, Uhl C, Hettrich H, et al. A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter[J]. Nature Electronics, 2020, 3(6): 338-345.[19] Mohammad A W, Shams H, Balakier K, et al. 5 Gbps wireless transmission link with an optically pumped uni-traveling carrier photodiode mixer at the receiver[J]. Optics express, 2018, 26(3): 2884-2890.[20] Mohammad A W, Shams H, Liu C P, et al. 60-GHz transmission link using uni-traveling carrier photodiodes at the transmitter and the receiver[J]. Journal of Lightwave Technology, 2018, 36(19): 4507-4513.[21] Harter T, Ummethala S, Blaicher M, et al. Wireless THz link with optoelectronic transmitter and receiver[J]. Optica, 2019, 6(8): 1063-1070.[22] Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale[J]. Nature Photonics, 2015, 9(8): 525-528.[23] Haffner C, Chelladurai D, Fedoryshyn Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 2018, 556(7702): 483-486.[24] Ummethala S, Harter T, Koehnle K, et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator[J]. Nature Photonics, 2019, 13(8): 519–524. [25] Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12):977-981.[26] Shams H, Tong S, Fice M J, et al. 100 Gb/s Multicarrier THz Wireless Transmission System with High Frequency Stability Based on A Gain-Switched Laser Comb Source[J]. IEEE Photonics Journal, 2015, 7(3):1-11.[27] Yu X, Asif R, Piels M, et al. 60 Gbit/s 400 GHz wireless transmission[C]// 2015 International Conference on Photonics in Switching (PS). IEEE, 2015.[28] Li X, Yu J, Xiao J, et al. W-Band PDM-QPSK Vector Signal Generation by MZM-Based Photonic Frequency Octupling and Precoding[J]. IEEE Photonics Journal, 2015, 7(4):1-6.[29] J. Yu, X. Li, J. Zhang and J. Xiao, "432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing," 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1-3.[30] Wang K, Yu J. Transmission of 51.2 Gb/s 16 QAM single carrier signal in a MIMO radio-over-fiber system at W-band[J]. Microw Opt Technol Lett. 2017, 59:2870–2874.[31] Akyildiz I, Jornet J, Han C. TeraNets: ultra-broadband communication networks in the terahertz band[J]. Wireless Communications IEEE, 2014, 21(4):130-135.[32] Oshima N, Hashimoto K, Suzuki S, et al. Wireless data transmission of 34 Gbit/s at a 500 GHz range using resonant tunnelling diode terahertz oscillator[J]. Electronics letters, 2016, 52(22): 1897-1898.[33] Han S, Chih-Lin I, Xu Z, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G[J]. IEEE Communications Magazine, 2015, 53(1): 186-194.[34] Li X , Yu J , Nan C , et al. Antenna polarization diversity for high-speed polarization multiplexing wireless signal delivery at W-band[J]. Optics Letters, 2014, 39(5):1169-1172.[35] Oshima N, Hashimoto K, Suzuki S, et al. Terahertz wireless data transmission with frequency and polarization division multiplexing using resonant-tunneling-diode oscillators[J]. IEEE Transactions on Terahertz science and Technology, 2017, 7(5): 593-598.[36] C. Shu, S. Hu, Y. Yao and X. Chen, "A High-gain Antenna with Polarization-Division Multiplexing for Terahertz Wireless Communications," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2018, pp. 1-2.[37] Li X, Yu J, Wang K, et al. Bidirectional delivery of 54-Gbps 8QAM W-band signal and 32-Gbps 16QAM K-band signal over 20-km SMF-28 and 2500-m wireless distance[C]//Optical Fiber Communication Conference. Optical Society of America, 2017: Th5A. 7.[38] Li X, Y J, Kong M, et al. 120 Gb/s Wireless Terahertz-Wave Signal Delivery by 375 GHz-500 GHz Multi-Carrier in a 2 × 2 MIMO System[J]. Journal of Lightwave Technology, 2019, 37(2): 606-611.[39] Li X, Yu J, Chang G K. Photonics-Aided Millimeter-Wave Technologies for Extreme Mobile Broadband Communications in 5G[J]. Journal of Lightwave Technology, 2020, 38(2):366-378.[40] Wang K, Li X, Miao K, et al. Probabilistically Shaped 16QAM Signal Transmission in a Photonics-aided Wireless Terahertz-Wave System[C]// Optical Fiber Communication Conference. 2018.[41] Li X, Yu J, Zhao L, et al. 1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band[J]. Journal of Lightwave Technology, 2019, 37(1): 196 - 204. |