[1] |
Cheng C, Luo Y L, Chen C X, et al. Research on secure multi-party ranking problem and secure selection problem [C].
|
|
International Conference on International Conference on Web Information Systems and Mining, 2010: 79-84.
|
[2] |
Wang N, Gu H M, Zheng T. A practical and efficient secure multi-party sort protocol [J]. Computer Applications and Software,
|
20 |
18, 35(10): 305-311.
|
|
王宁, 顾昊旻, 郑彤. 一种实用高效的安全多方排序协议[J]. 计算机应用与软件, 2018, 35(10): 305-311.
|
[3] |
Li S D, Zhang X P. Secure multi-party computation protocol for sorting problem [J]. Journal of Xi’an Jiaotong University,
|
20 |
08, 42(2): 231-233, 255.
|
|
李顺东, 张选平. 排序问题的多方保密计算协议[J]. 西安交通大学学报, 2008, 42(2): 231-233, 255.
|
[4] |
Yao A C. Protocols for secure computations [C]. Annual Symposium on Foundations of Computer Science, 1982, 54: 160-164.
|
[5] |
GoodrichMT. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm running in O(nlogn) time [C]. Proceedings
|
|
of the Annual ACM Symposium on Theory of Computing, 2014, 46: 684-693.
|
[6] |
Xiao Q, Luo S S, Chen P, et al. Research on secure multi party scheduling problem under semi honest model [J]. Acta
|
|
Electronica Sinica, 2008, 36(4): 709-714.
|
|
肖倩, 罗守山, 陈萍, 等. 半诚实模型下安全多方排序问题的研究[J]. 电子学报, 2008, 36(4): 709-714.
|
[7] |
Qiu M, Luo S S, Liu W, et al. Using RSA cryptosystem to solve secure multi party multi data sorting problem [J]. Acta
|
|
Electronica Sinica, 2009, 37(5): 1119-1123.
|
|
邱梅, 罗守山, 刘文. 利用RSA 密码体制解决安全多方多数据排序问题[J]. 电子学报, 2009, 37(5): 1119-1123.
|
[8] |
Shi B S, Jiang Y K, Guo G C. Manipulating the frequency-entangled states by an acoustic-optical modulator [J]. Physical
|
|
Review A, 2000, 61(6): 064102.
|
[9] |
Xue P, Li C F, Guo G C. Addendum to efficient quantum-key-distribution scheme with nonmaximally entangled states [J].
|
|
Physical Review A, 2002, 65(3): 034302.
|
[10] |
Yang Y G, Wen Q Y, Zhu F C. Optimal inclusive teleportation of a d-dimensional two particle unknown quantum state [J].
|
|
Chinese Physics B (English Version), 2006, 15(5): 907-911.
|
[11] |
YangY G, Wen Q Y, Zhu F C. An efficient two step quantum key distribution protocol with orthogonal product states [J].
|
|
Chinese Physics B (English Version), 2007, 16(4): 910-914.
|
[12] |
Cleve R, Gottesman D, Lo H K. How to share a quantum secret [J]. Physical Review Letters, 1999, 83(3): 648-651.
|
[13] |
Lu H, Zhang Z, Chen L K, et al. Secret sharing of a quantum state [J]. Physical Review Letters, 2016, 117(3): 030501.
|
[14] |
Ain N U. A novel approach for secure multi-party secret sharing scheme via quantum cryptography [C]. 2017 International
|
|
Conference on Communication, Computing and Digital Systems (C-CODE). IEEE, 2017: 112-116.
|
[15] |
Shi R H. Research on Quantum Secret Sharing and Other Multi-Party Quantum Cryptography Protocols [D]. Hefei: University
|
|
of Science and Technology of China, 2011.
|
|
石润华. 量子秘密共享及其它多方量子密码协议研究[D]. 合肥: 中国科学技术大学, 2011.
|
[16] |
Majumder A, Mohapatra S, Kumar A. Experimental realization of secure multiparty quantum summation using five-qubit IBM
|
|
quantum computer on cloud [J]. 2017, arXiv: 1707. 07460.
|
[17] |
Zhong H, Huang L S, Luo Y L. Multi candidate electronic election scheme based on secure multi-party summation [J]. Computer
|
|
Research and Development, 2006, 43(8): 1405-1410.
|
|
仲红, 黄刘生, 罗永龙. 基于安全多方求和的多候选人电子选举方案[J]. 计算机研究与发展, 2006, 43(8): 1405-1410.
|
[18] |
Zhang Y H. Research on the Choice of Protecting Private Information [D]. Anhui: Anhui University, 2014.
|
|
张永华. 保护私有信息的选择问题研究[D]. 安徽: 安徽大学, 2014.
|
[19] |
Zhang H X, Lu Z C. The ordering problem of quantization [J]. Journal of Hangzhou University (Natural Science Edition),
|
19 |
97, 24(3): 226-229.
|
|
张洪宪, 陆志成. 量子化的排序问题[J]. 杭州大学学报(自然科学版), 1997, 24(3): 226-229.
|
[20] |
Liu W, Wang Y B. Research on secure multiparty quantum scheduling problem [J]. Acta Physica Sinica, 2011, 60(7): 53-60.
|
|
刘文, 王永滨. 保密多方量子排序问题的研究[J]. 物理学报, 2011, 60(7): 53-60.
|
[21] |
Qian X Q. Research on Secure Multiparty Ordering [D]. Anhui: Anhui University, 2013.
|
|
钱小强. 安全多方排序的研究[D]. 安徽: 安徽大学, 2013.
|
[22] |
Shi R H, Mu Y, Zhong H, et al. Secure multiparty quantum computation for summation and multiplication [J]. Scientific
|
|
Reports, 2016, 6(1): 28-34.
|
[23] |
Yang H Y, Ye T Y. Secure multi-party quantum summation based on quantum Fourier transform [J]. Quantum Information
|
|
Processing, 2018, 17(6): 1-17.
|
[24] |
Du J Z, Chen X B, Wen Q Y, et al. Secure multiparty quantum summation [J]. Acta Physica Sinica, 2007, 56(11): 6214-6219.
|
|
杜建忠, 陈秀波, 温巧燕, 等. 保密多方量子求和[J]. 物理学报, 2007, 56(11): 6214-6219.
|
[25] |
Overill R E. Review: Foundations of cryptography, volume II: Basic applications [J]. Journal of Logic and Computation, 2005,
|
15 |
(3): 218-229.
|
[26] |
Shen M Y, Cheng X Y, Guan Z J, et al. Realization method of two-dimensional nearest neighbor for quantum circuits [J].
|
|
Chinese Journal of Quantum Electronics, 2019, 36(4): 476-482.
|
|
沈鸣燕, 程学云, 管致锦, 等. 一种量子线路二维近邻实现方法[J]. 量子电子学报, 2019, 36(4): 476-482.
|
[27] |
Dai J, Li Z Q, Pan S H, et al. Deutsch-Jozsa algorithm realization based on IBM Q [J]. Chinese Journal of Quantum Electronics,
|
20 |
20, 37(2): 202-209.
|
|
戴娟, 李志强, 潘苏含, 等. 基于IBM Q 的Deutsch-Jozsa 算法实现[J]. 量子电子学报, 2020, 37(2): 202-209.
|
[28] |
Wei J, Ni M, Zhou M, et al. Research of quantum algorithm based on IBM Q platform [J]. Computer Engineering, 2018,
|
44 |
(12): 6-12.
|
|
卫佳, 倪明, 周明, 等. 基于IBM Q 平台的量子算法研究[J]. 计算机工程, 2018, 44(12): 6-12.
|