[1]Charles H Bennett, Gilles Brassard.Quantum cryptography: Public key distribution and coin tossing[J].Theoretical Computer Science, 2014, 560:7-11.
[2]Norbert Lütkenhaus.Security against individual attacks for realistic quantum key distribution[J].Phys. Rev. A, 2000, 61(5):052304-
[3]Norbert Lütkenhaus, Mika Jahma.Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack[J].New Journal of Physics, 2002, 4:44-44
[4]Brassard G, N Liitkenhaus, Mor T, et al.Limitations on Practical Quantum Cryptography[J].Phys. Rev. Lett., 2000, 85(6):1330-
[5]Wang Xiang-Bin.Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography[J].Phys. Rev. Lett., 2005, 94(23):230503-
[6]Hwang Won-Young.Quantum Key Distribution with High Loss: Toward Global Secure Communication[J].Phys. Rev. Lett., 2003, 91(5):057901-
[7]Lo Hoi-Kwong, Ma Xiongfeng, Chen Kai.Decoy State Quantum Key Distribution[J].Phys. Rev. Lett., 2005, 94(23):230504-
[8]Zhang ShengLi, Zou XuBo, Li ChuanFeng, Jin ChenHui, Guo GuangCan.A universal coherent source for quantum key distribution[J].Chinese Science Bulletin, 2009, 54(11):1863-1871
[9]Horikiri T, Kobayashi T.Decoy state quantum key distribution with a photon number resolved heralded single photon source[J].Phys. Rev. A, 2006, 73(3):032331-
[10]Mayers D.Unconditional security in quantum cryptography[J].J. ACM, 2001, 48(3):351-406
[11]H K Lo, H F Chau.Unconditional security of quantum key distribution over arbitrarily long distances[J].Science, 1999, 283(5410):2050-2056
[12]SHA Yitian, FENG Bao, JIA Wei, LI Wei.A method to eliminate the influence of statistical fluctuation on the source parameters for quantum key distribution[J].量子电子学报, 2020, 37(1):57-62
[13] Wang X B, Peng C Z, Zhang J, et al.General theory of decoy-state quantum cryptography with source errors[J].Phys. Rev. A, 2008, 77(4):042311-
[14] Wang X B, Yang L, Peng C Z, et al.Decoy-state quantum key distribution with both source errors and statistical fluctuations[J]. New J Phys, 2009, 11: 075006
[15] Wang S, Zhang S L, Li H W, et al.Decoy-state theory for the heralded single-photon source with intensity fluctuations[J]. Phys. Rev. A, 2009, 79(6): 062309
[16]Makarov V.Controlling passively quenched single photon detectors by bright light[J].New J. Phys., 2009, 11(6):065003-
[17]Makarov V, Anisimov A, Sauge S.Quantum hacking: adding a commercial actively-quenched module to the list of single-photon detectors controllable by Eve[J].arXiv:quant-ph, 2009, :-
[18]Anthony Laing, Valerio Scarani, et al.Reference-frame-independent quantum key distribution[J].Phys. Rev. A, 2010, 82(1):012304-
[19]Xiang Li, Chenchen Mao, et al.Decoy-state reference-frame-independent quantum key distribution with the heralded pair-coherent source[J].The European Physical Journal D, 2019, 73(5):86-
[20]Xu Feihu, Xu He, Lo Hoi-Kwong.Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution[J] Phys. Rev. A, 2014, 89, 052333.[J].Phys. Rev. A, 2014, 89(5):052333-
[21] 郭弘, 李政宇, 彭翔.量子密码[M].北京: 国防工业出版社, 2016:268-269
[22] 王灿.缺陷光源下参考系无关量子密钥分发的理论研究[D]. 长沙: 国防科学技术大学, 2015: 38-40.
|