[1] Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding [J]. Physical review letters, 2007, 98(1): 010505.[2] Zhang P, Liu R F, Huang Y F, et al. Demonstration of Deutsch’s algorithm on a stable linear optical quantum computer[J]. Physical Review A, 2010, 82(6): 064302.[3] Howell J C, Antia L L, and Dik B. Experimental violation of a spin-1 Bell inequality using maximally entangled four-photon states[J]. Physical Review Letters, 2002, 88(3): 030401.[4] Flossmann F, Ulrich T S, Max M, et al. Polarization singularities from unfolding an optical vortex through a birefringent crystal[J]. Physical review letters, 2005, 95(25): 253901.[5] Sun C C , and Liu C K. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation[J]. Optics letters, 2003, 28(2): 99-101.[6] Mandel L and Wolf E. Coherence Optics and Quantum Optics[B], Cambridge University Press 1995.[7] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J], Physical Review A, 1992, 45: 8185.[8] Bozinovic N, Yue Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. science, 2013, 340(6140): 1545-1548.[9] Tamburini F, Gabriele A, Umbriaco G, et al. Overcoming the Rayleigh criterion limit with optical vortices[J]. Physical review letters, 2006, 97(16): 163903.[10] Jesacher A, Fürhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy[J]. Physical review letters, 2005, 94(23): 233902.[11] Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a Bell inequality[J]. Physical review letters, 2009, 103(8): 083602.[12] Uribe N, Andrew F, David S, et al. Object identification using correlated orbital angular momentum states[J]. Physical review letters, 2013 110(4): 043601.[13] Data A, Leach J, Buller G, et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequality[J]. Nature Phys, 2011, 7: 677-680.[14] Adesso G, Ambrosio V, Nagali E, et al, Experimental Entanglement Activation from Discord in a Programmable Quantum Measurement[J], physical review letters, 2014, 112: 140501.[15] Wang J, Yang J, Fazal I, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature photonics, 2012, 6(7): 488-496.[16] Vallone G., Ambrosio V, Sponselli A, et al. Free-space quantum key distribution by rotation-invariant twisted photons[J]. Physical review letters, 2014, 113(6): 060503.[17] Mafu M, Dudley A, Goyal S, et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases[J]. Physical Review A, 2013, 88(3): 032305.[18] Fickler R, Lapkiewicz R, Plick W, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338(6107): 640-643.[19] Zhang P, Ren X, Zou X, et al. Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons[J]. Physical Review A, 2007, 75(5): 052310.[20] Zhang P, Liu B, Liu R, et al. Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons[J]. Physical Review A, 2010, 81(5): 052322.[21] Goyal S, Filippus S, Forbes A, et al. Implementing quantum walks using orbital angular momentum of classical light[J]. Physical review letters, 2013, 110(26): 263602.[22] Ralph, T. C., K. J. Resch, et al. Efficient Toffoli gates using qudits[J]. Physical Review A, 2007, 75(2): 022313.[23] Bazhenov V, Vasnetsov M, and Soskin M. Laser beams with screw dislocations in their wavefronts[J]. Jetp Lett, 1990, 52(8): 429-431.[24] Beijersbergen M, Allen L, Van D V, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1): 123-132.[25] Mair A, Vaziri A, Weihs G, and et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.[26] Beijersbergen M, Coerwinkel R, Kristensen M, and et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics communications, 1994, 112(5): 321-327.[27] Oemrawsingh S, Houwelingen J, Eliel E R, et al. Production and characterization of spiral phase plates for optical wavelengths[J]. Applied optics, 2004, 43(3): 688-694.[28] Cai X, Wang J, Strain M, etal. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.[29] Babazadeh A, Erhard M, Wang F, et al. High-dimensional single-photon quantum gates: concepts and experiments[J]. Physical review letters, 2017, 119(18): 180510.[30] Ru S, Wang Y, An M, et al. Realization of a deterministic quantum Toffoli gate with a single photon[J]. Physical Review A, 2021, 103 (2): 022606.[31] Wang F, Ru S, Wang Y, et al. Experimental demonstration of a quantum controlled-SWAP gate with multiple degrees of freedom of a single photon[J]. Quantum Science and Technology, 2021, 6 (3): 035005.[32] Karimi E, Leach J, Slussarenko S, et al. Spin-orbit hybrid entanglement of photons and quantum contextuality[J]. Physical Review A, 2010, 82(2):022115.[33] Ru S, An M, Yang Y, et al. Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology[J]. Physical Review A, 2021, 103(5): 052404.[34] Wang F, Erhard M, Babazadeh A, et al. Generation of the complete four-dimensional Bell basis[J]. Optica, 2017, 4(12): 1462-1467.[35] Hu X, Guo Y, Liu B, et al. Beating the channel capacity limit for superdense coding with entangled ququarts[J]. Science Advance, 2018, 4(7): eaat9304.[36] Chapman J, Graham T, Zeitler C, et al. Time-Bin and Polarization Superdense Teleportation for Space Applications[J]. Physical Review Applied, 2020, 14: 014044.[37] Gao C, Ren B, Zhang Y, et al. Universal linear-optical hyperentangled Bell-state measurement[J], Applied Physics Express, 2020, 13(2): 027004.[38] Liu R, Zhao S, Zhang P, et al. Complex wavefront reconstruction with single-pixel detector[J], Applied Physics Letters, 2019, 114(16): 161901.[39] Wang X, Qian F, Zhang J, et al. Learning to recognize misaligned hyperfine orbital angular momentum modes[J], Photonics Research, 2021, 9(4): B81-B86.[40] Lyu M, Wang H, Li G, et al. Learning-based lens-less imaging through optically thick scattering media[J], Advance Photonics, 2019, 1: 036002. |