[1] Allen L, Beijersbergen M, Spreeuw R and Woerdman J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45: 8185.[2] Padgett M. Orbital angular momentum 25 years on [J]. Optics Express, 2017, 25: 11265-11274.[3] Shen Y, Wang X, Xie Z, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Sci Appl, 2019, 8: 90.[4] Forbes A. Structured Light from Lasers[J]. Laser & Photonics Reviews, 2019, 13: 1900140.[5] Forbes, A., de Oliveira, M. & Dennis, M.R. Structured light[J]. Nature Photonics, 2021, 15,: 253-262.[6] Lazarev G, Chen P, Strauss J, Fontaine N, and Forbes A, Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited][J]. Opt. Express, 2019, 27: 16206-16249.[7] Ren Y., Lu R and Gong L. Tailoring light with a digital micromirror device[J]. ANNALEN DER PHYSIK, 2015, 527: 447-470. [8] Turtaev S, Leite I, Mitchell K, Padgett M, Phillips D and ?i?már T. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics[J]. Opt. Express, 2017, 25: 29874-29884.[9] Rubano A, Cardano F, Piccirillo B and Marrucci L. Q-plate technology: a progress review [Invited][J]. J. Opt. Soc. Am. B, 2019, 36: D70-D87.[10] Marrucci L. et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. J. Opt. 2011, 13: 064001.[11] Cardano F, Marrucci L. Spin-orbit photonics[J]. Nature Photon, 2015, 9: 776-778.[12] Bliokh K, Rodríguez-Fortu?o F, Nori F et al. Spin-orbit interactions of light[J]. Nature Photon, 2015, 9:796-808.[13] Gori F, Guattari G, Padovani C. Bessel-Gauss beams[J]. Optics Communications, 1987, 64(6): 491-495.[14] Efremidis N, Chen Z, Segev M and Christodoulides D. Airy beams and accelerating waves: an overview of recent advances[J]. Optica, 2019, 6(5): 686-701.[15] Zhuang J, Zhang L and Deng D. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam[J] Optics Letters, 2020, 45(2): 296-299.[16] Zhan Q. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1: 1-57.[17] Shen Y, Yang X, Naidoo D, Fu X and Forbes A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser[J]. Optica , 2020, 7: 820-831.[18] Wang Z, Shen Y, Naidoo D, et al. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics[J]. Optics Express, 2021, 29(1): 315-329.[19] Padgett M and Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5: 343-348.[20] Yang L, Zhou L and Zhao N. Anomalous motion of a particle levitated by Laguerre-Gaussian beams[J]. Optics Letters, 2021, 46(1): 106-109.[21] Yang Y, Ren Y, Chen M, et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 2021, 3(3): 034001.[22] Lavery M, Speirits F, Barnett S and Padgett M. Detection of a Spinning Object Using Light’s Orbital Angular Momentum[J]. Science, 2013, 341(6145), 537-540.[23] Lavery M, Barnett S, Speirits F and Padgett M. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body[J]. Optica, 2014, 1(1):1-3.[24] Fu S., Wang T, Zhang Z, Zhai Y and Gao C. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of Obstructions[J]. Optics Express, 2017, 25: 20098-20108.[25] Wang J, Yang J, Fazal I, et al. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6: 488-496.[26] Fu S, Zhai Y, Zhou H, et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding[J]. Optics Letters, 2019, 44(19): 4753-4756.[27] Fu S, Zhai Y, Zhou H, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying[J]. Optics Express, 2019, 27(23): 33111.[28] Bernet S, Jesacher A, Furhapter S, Maurer C and RitschMarte M. Quantitative imaging of complex samples by spiral phase contrast microscopy[J]. Optics Express, 2006, 14: 3792-3805.[29] Andrews D. Structured Light and its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces[M]. Academic Press, 2008.[30] Yi X, Liu Y, Ling X, et al. Hybrid-order Poincare sphere[J]. Physical Review A, 2015, 91: 023801.[31] Milione G,Sztul H, Nolan D, et al. Higher order Poincare sphere, stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 2011, 107(5): 053601.[32] Poincare H. Theorie mathematique de la Lomiere[M]. Paris: Gauthiers-Villars, 1892: 2.[33] Ren Z, Rong L, Li S, et al. Generalized Poincare sphere[J]. Optics Express, 2015, 23(20): 26585-26595.[34] Shen Y, Wang Z, Fu X, et al. SU(2) Poincaré sphere: A generalized representation for multidimensional structured light[J]. Physical Review A, 2020, 102: 031501.[35] Fu S, et al. Representation of total angular momentum states of beams through a four-parameter notation[J]. New Journal of Physics, 2021, 23: 083015.[36] Ngcobo S, Litvin I, Burger L and Forbes A. A digital Laser for on-demand laser modes[J]. Nature Communications, 2013, 4: 2289.[37] Naidoo D, Roux F, Dudley A, er al. Controlled generation of higher-order Poincare sphere beams from a laser[J]. Nature Photon, 2016, 10: 327-332.[38] Qiao Z, Xie G, Wu Y, et al. Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order[J]. Laser p.Photonics Reviews, 2018, 1800019.[39] Sharma V, Kumar S, Aadhi A, et al. Tunable vector-vortex beam optical parametric oscillator[J]. Scientific Reports, 2019, 9: 9578.[40] Fan J, Xiao N, Zhao J, et al. Controlled Generation of Wavelength-Tunable Higher Order Poincaré Sphere Beams From a Femtosecond Optical Parametric Oscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(6): 8800205.[41] Fan J, Zhao J, Shi L, et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator[J]. Advanced Photonics, 2020, 2(4): 045001.[42] Sroor H, Huang Y, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 2020, 14: 498-503.[43] Song R, Gao C, Zhou H and Fu S. Resonantly pumped Er:YAG vector laser with selective polarization states at 1.6 μm[J]. Optics Letters, 2020, 45(16): 4626-4629.[44] Song R, Liu X, Fu S and Gao C. Simultaneous tailoring of longitudinal and transverse mode inside an Er:YAG laser[J]. Chinese Optics Letters (accepted, in press). |