参考文献[1] https://wesr.unep.org/ [J]. 2022.[2] https://www.climatewatchdata.org [J]. 2022.[3] Shi H, Chen Q. Building energy management decision-making in the real world: A comparative study of HVAC cooling strategies [J]. Journal of Building Engineering, 2021, 33: 101869.[4] Ebrahimi A, Shayegani A, Zarandi M M. Thermal Performance of Sustainable Element in Moayedi Icehouse in Iran [J]. International Journal of Architectural Heritage, 2021, 15(5): 740-756.[5] Raman A P, Anoma M A, Zhu L, et al. Passive radiative cooling below ambient air temperature under direct sunlight [J]. Nature, 2014, 515(7528): 540-544.[6] Zhai Y, Ma Y, David S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling [J]. Science, 2017, 355(6329): 1062.[7] Mandal J, Fu Y, Overvig A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling [J]. Science, 2018, 362(6412): 315.[8] Li T, Zhai Y, He S, et al. A radiative cooling structural material [J]. Science, 2019, 364(6442): 760.[9] Mandal J, Yang Y, Yu N, et al. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings [J]. Joule, 2020, 4(7): 1350-1356.[10] Goldstein E A, Raman A P, Fan S. Sub-ambient non-evaporative fluid cooling with the sky [J]. Nature Energy, 2017, 2(9): 17143.[11] Smith G, Gentle A. Radiative cooling: Energy savings from the sky [J]. Nature Energy, 2017, 2(9): 17142.[12] Zhu L, Raman A, Wang K X, et al. Radiative cooling of solar cells [J]. Optica, 2014, 1(1): 32-38.[13] Zhu L, Raman A P, Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody [J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 12282-12287.[14] Hsu P-C, Song A Y, Catrysse P B, et al. Radiative human body cooling by nanoporous polyethylene textile [J]. Science, 2016, 353(6303): 1019-1023.[15] Cai L, Song A Y, Li W, et al. Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling [J]. 2018, 30(35): 1802152.[16] Li D, Liu X, Li W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling [J]. Nature Nanotechnology, 2020.[17] Li J, Wang X, Liang D, et al. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling [J]. Science Advances, 2022, 8(31): eabq0411.[18] Zeng S, Pian S, Su M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling [J]. Science, 2021, 373(6555): 692-696.[19] Wang S, Jiang T, Meng Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation [J]. Science, 2021, 374(6574): 1501-1504.[20] Tang K, Dong K, Li J, et al. Temperature-adaptive radiative coating for all-season household thermal regulation [J]. Science, 2021, 374(6574): 1504-1509.[21] Chen Z, Zhu L, Raman A, et al. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle [J]. Nature Communications, 2016, 7(1): 13729.[22] Fan S, Li W. Photonics and thermodynamics concepts in radiative cooling [J]. Nature Photonics, 2022, 16(3): 182-190.[23] Zou C, Ren G, Hossain M M, et al. Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling [J]. Advanced Optical Materials, 2017, 5(20): 1700460.[24] Rephaeli E, Raman A, Fan S. Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling [J]. Nano Letters, 2013, 13(4): 1457-1461.[25] Zhu L, Raman A, Fan S. Color-preserving daytime radiative cooling [J]. Applied Physics Letters, 2013, 103(22): 223902.[26] Hossain M M, Jia B, Gu M. A Metamaterial Emitter for Highly Efficient Radiative Cooling [J]. Advanced Optical Materials, 2015, 3(8): 1047-1051.[27] Heo S-Y, Lee G J, Kim D H, et al. A Janus emitter for passive heat release from enclosures [J]. Science Advances, 2020, 6(36): eabb1906.[28] Sun K, Riedel C A, Wang Y, et al. Metasurface Optical Solar Reflectors Using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft [J]. ACS Photonics, 2018, 5(2): 495-501.[29] Zhang W-W, Qi H, Sun A-T, et al. Periodic trapezoidal VO2-Ge multilayer absorber for dynamic radiative cooling [J]. Optics Express, 2020, 28(14): 20609-20623.[30] Bao H, Yan C, Wang B, et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling [J]. Solar Energy Materials and Solar Cells, 2017, 168: 78-84.[31] Huang Z, Ruan X. Nanoparticle embedded double-layer coating for daytime radiative cooling [J]. International Journal of Heat and Mass Transfer, 2017, 104: 890-896.[32] Wang L, Jacques S L, Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues [J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146.[33] Shi N N, Tsai C-C, Carter M J, et al. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization [J]. Light: Science & Applications, 2018, 7(1): 37.[34] Li X, Peoples J, Huang Z, et al. Full Daytime Sub-ambient Radiative Cooling in Commercial-like Paints with High Figure of Merit [J]. Cell Reports Physical Science, 2020, 1(10): 100221.[35] Laaksonen K, Li S Y, Puisto S R, et al. Nanoparticles of TiO2 and VO2 in dielectric media: Conditions for low optical scattering, and comparison between effective medium and four-flux theories [J]. Solar Energy Materials and Solar Cells, 2014, 130: 132-137.[36] Wheeler M S, Aitchison J S, Chen J I L, et al. Infrared magnetic response in a random silicon carbide micropowder [J]. Physical Review B, 2009, 79(7): 073103.[37] Aili A, Wei Z Y, Chen Y Z, et al. Selection of polymers with functional groups for daytime radiative cooling [J]. Materials Today Physics, 2019, 10: 100127.[38] Yu X, Chan J, Chen C. Review of radiative cooling materials: Performance evaluation and design approaches [J]. Nano Energy, 2021, 88: 106259.[39] Wang X, Liu X, Li Z, et al. Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling [J]. Advanced Functional Materials, 2020, 30(5): 1907562.[40] Huang W, Chen Y, Luo Y, et al. Scalable Aqueous Processing-Based Passive Daytime Radiative Cooling Coatings [J]. Advanced Functional Materials, 2021, n/a(n/a): 2010334.[41] Zhu R, Hu D, Chen Z, et al. Plasmon-Enhanced Infrared Emission Approaching the Theoretical Limit of Radiative Cooling Ability [J]. Nano Letters, 2020.[42] Wang T, Wu Y, Shi L, et al. A structural polymer for highly efficient all-day passive radiative cooling [J]. Nature Communications, 2021, 12(1): 365.[43] Lee E, Luo T. Black body-like radiative cooling for flexible thin-film solar cells [J]. Solar Energy Materials and Solar Cells, 2019, 194: 222-228.[44] Zhang H, Ly K C S, Liu X, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling [J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14657-14666.[45] Song J, Qin J, Qu J, et al. The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings [J]. Solar Energy Materials and Solar Cells, 2014, 130: 42-50.[46] Peoples J, Li X, Lv Y, et al. A strategy of hierarchical particle sizes in nanoparticle composite for enhancing solar reflection [J]. International Journal of Heat and Mass Transfer, 2019, 131: 487-494.[47] Santamouris M, Synnefa A, Karlessi T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions [J]. Solar energy, 2011, 85(12): 3085-3102.[48] Orel B, Gunde M K, Krainer A. Radiative cooling efficiency of white pigmented paints [J]. Solar energy, 1993, 50(6): 477-482.[49] Meir M G, Rekstad J B, L?vvik O M. A study of a polymer-based radiative cooling system [J]. Solar energy, 2002, 73(6): 403-417.[50] Granqvist C G, Hjortsberg A. Surfaces for radiative cooling: Silicon monoxide films on aluminum [J]. Applied Physics Letters, 1980, 36(2): 139-141.[51] Chae D, Kim M, Jung P-H, et al. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling [J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073-8081.[52] Guo J, Ju S, Shiomi J. Design of a highly selective radiative cooling structure accelerated by materials informatics [J]. Optics Letters, 2020, 45(2): 343-346.[53] Chen M, Pang D, Mandal J, et al. Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling [J]. Nano Letters, 2021, 21(3): 1412-1418.[54] Xue X, Qiu M, Li Y, et al. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling [J]. Advanced Materials, 2020, n/a(n/a): 1906751.[55] Peng Y, Chen J, Song A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric [J]. Nature Sustainability, 2018, 1(2): 105-112.[56] Cai L, Peng Y, Xu J, et al. Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles [J]. Joule, 2019, 3(6): 1478-1486.[57] Zhu B, Li W, Zhang Q, et al. Subambient daytime radiative cooling textile based on nanoprocessed silk [J]. Nature Nanotechnology, 2021, 16(12): 1342-1348.[58] Hsu P-C, Liu C, Song A Y, et al. A dual-mode textile for human body radiative heating and cooling [J]. 2017, 3(11): e1700895.[59] Luo H, Zhu Y, Xu Z, et al. Outdoor Personal Thermal Management with Simultaneous Electricity Generation [J]. Nano Letters, 2021, 21(9): 3879-3886.[60] Ly K C S, Liu X, Song X, et al. A Dual-Mode Infrared Asymmetric Photonic Structure for All-Season Passive Radiative Cooling and Heating [J]. Advanced Functional Materials, 2022, 32(31): 2203789.[61] Zhang X A, Yu S, Xu B, et al. Dynamic gating of infrared radiation in a textile [J]. Science, 2019, 363(6427): 619.[62] Li X, Ma B, Dai J, et al. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management [J]. Science Advances, 7(51): eabj7906.[63] Li X-H, Liu C, Feng S-P, et al. Broadband Light Management with Thermochromic Hydrogel Microparticles for Smart Windows [J]. Joule, 2019, 3(1): 290-302.[64] Zhou Y, Wang S, Peng J, et al. Liquid Thermo-Responsive Smart Window Derived from Hydrogel [J]. Joule, 2020, 4(11): 2458-2474.[65] Lin C, Hur J, Chao C Y H, et al. All-weather thermochromic windows for synchronous solar and thermal radiation regulation [J]. Science Advances, 8(17): eabn7359.[66] Wu S-H, Chen M, Barako M T, et al. Thermal homeostasis using microstructured phase-change materials [J]. Optica, 2017, 4(11): 1390-1396.[67] Ono M, Chen K, Li W, et al. Self-adaptive radiative cooling based on phase change materials [J]. Optics Express, 2018, 26(18): A777-A787. |