[1] Wang Z P, Shi R, Zhang T R. Three-phase electrochemistry for green ethylene production [J]. Current Opinion in Electrochemistry, 2021, 30: 100789.[2] He V C, Wang Y, Chen Y, et al. An ethane-favored metal-organic framework with tailored pore environment used for efficient ethylene separation [J]. Microporous and Mesoporous Materials, 2021, 320: 111096.[3] Ren T, Patel M K, Blok K. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs [J]. Energy, 2008, 33(5):817–833.[4] Niu H, Mo Z W, Shao M, et al. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation [J]. Frontiers of Environmental Science & Engineering, 2016, 10(5): 1– 11.[5] Wei W, Ren Y T, Yang G, et al. Characteristics and source apportionment of atmospheric volatile organic compounds in Beijing, China [J]. Environmental Monitoring and Assessment, 2019, 191(12): 762.[6] Akhter F, Siddiquei H R, Mukhopadhyay S C. A Graphene-based Composite for Selective Detection of Ethylene at Ambient Environment [J]. 2021 IEEE Sensors, 2021, 1-4.[7] Li Z B, Pang W, Liang H B, et al. A novel method to realize multicomponent infrared spectroscopy gas logging based on PSO-split peak fitting-SVM [J]. Journal of Natural Gas Science and Engineering, 2022, 101(07): 104496.[8] Leite D C, Corrêa A A P, Júnior L C C, et al. Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program [J]. Journal of Food Composition and Analysis, 2020, 91: 103536.[9] Shi Y J, Wu H T, Liu W H, et al. The design of wireless electronic nose based on near infrared spectral absorption technology [J]. Infrared and Laser Engineering, 2021. 史屹君,武鸿涛,刘文皓,等. 基于近红外光谱吸收技术的无线电子鼻设计 [J]. 红外与激光工程,2021.[10] Qu D S, Fan H J, Liu L W, et al. Measurement of gas parameters in supersonic combustion field based on near-infrared spectroscopy [J]. Acta Optica Sinica, 2020, 40(03): 198-205. 屈东胜,樊宏杰,刘连伟,等. 基于近红外光谱的超声速燃烧场气体参数测量研究 [J]. 光子学报,2020,40(03): 198-205.[11] Zhang J, Yuan S, Zhang J. Detection of sugar degree in strawberry based on wavelet transform-genetic algorithm-partial least squares [J]. Journal of Analytical Science, 2020, 36(01): 111-115. 张娟,原帅,张骏. 基于小波变换-遗传算法-偏最小二乘的草莓糖度检测研究 [J]. 分析科学学报,2020,36(01): 111-115.[12] Deng H R, Lv C W, Chen D L, et al. Application of ant colony optimization in hyperspectral prediction modeling of soil texture [J]. Chinese Journal of Soil Science, 2021, 52(05): 1063-1068. 邓浩然,吕成文,陈东来,等. 蚁群算法在土壤质地高光谱预测建模中的应用 [J]. 土壤通报,2021,52(05): 1063-1068.[13] Xu L, Zhu W H, Yao H B, et al. Prediction of acetic acid concentration in Chinese liquors based on fluorescence spectrum and simulated annealing algorithm [J]. Spectroscopy and Spectral Analysis, 2021, 41(07): 2159-2165. 许蕾,朱卫华,姚红兵,等. 基于荧光光谱—模拟退火法年份白酒中乙酸浓度预测研究 [J]. 光谱学与光谱分析,2021,41(07): 2159-2165.[14] Huang J S, Wang D X, Xiong A H, et al. A hybrid variable selection strategy of near infrared spectroscopy for detection the ratio of tea polyphenols to amino acids in green tea infusion [J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(06): 1270-1276. 黄俊仕,王冬欣,熊爱华,等. 基于混合变量选择的绿茶酚氨比近红外光谱检测方法 [J]. 江西农业大学学报,2020,42(06): 1270-1276.[15] Zhao J Y, Xiong Z X, Ning J M, et al. Wavelet transform combined with SPA to optimize the near-infrared analysis model of caffeine in tea [J]. Journal of Analytical Science, 2021, 37(05): 611-617. 赵静远,熊智新,宁井铭,等. 小波变换结合连续投影算法优化茶叶中咖啡碱的近红外分析模型 [J]. 分析科学学报,2021,37(05): 611-617.[16] Li C T, Zhang Y Y, Chen H Z, et al. Near-infrared spectral waveband selection for soil potassium based on simulated annealing [J]. Laser & Optoelectronics Progress, 2022, 59(13): 1330002. 李春婷,张优优,陈华舟,等. 基于模拟退火的土壤钾含量近红外光谱波段优选 [J]. 激光与光电子学进展,2022,59(13): 1330002.[17] Sun X R, Zhou Z J, Liu C L, et al. Near infrared spectroscopic detection of gluten content in wheat flour based on spectral pretreatment and simulated annealing algorithm [J]. Food Science, 2018, 39(02): 222-226. 孙晓荣,周子健,刘翠玲,等. 光谱预处理结合模拟退火算法的小麦粉面筋含量检测 [J]. 食品科学,2018,39(02): 222-226, 2018, 39(02): 222-226.[18] Yun Y H, Wang W T, Tan M L, et al. A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration [J]. Analytica Chimica Acta, 2014, 807: 36-43.[19] Zhang H, Liu G H, Jiang H, et al. Quantitative detection of ethanol solid-state fermentation process parameters based on near infrared spectroscopy [J]. Laser & Optoelectronics Progress, 2017, 54(02): 320-326. 张航,刘国海,江辉,等. 基于近红外光谱技术的乙醇固态发酵过程参数定量检测 [J]. 激光与光电子学进展,2017,54(02): 320-326.[20] Cheng J H, Chen Z G. Wavelength selection method for near infrared spectroscopy based on iteratively retains informative variables and successive projections algorithm [J]. Chinese Journal of Analytical Chemistry, 2021, 49(08): 1402-1409. 程介虹,陈争光. 基于迭代保留信息变量和连续投影的近红外光谱波长选择方法 [J]. 分析化学,2021,49(08): 1402-1409.[21] An S Y, Zhang L, Shang X Z, et al. Variable selection method in the NIR quantitative analysis model of total saponins in red ginseng extract [J]. Spectroscopy and Spectral Analysis, 2021, 41(01): 206-209. 安思宇,张磊,尚献召,等. 红参提取物总皂苷近红外定量分析建模中的变量筛选 [J]. 光谱学与光谱分析,2021,41(01): 206-209.[22] Zhan X R, Zhu X R, Shi X Y, et al. Determination of hesperidin in tangerine leaf by near-infrared spectroscopy with SPXY algorithm for sample subset partitioning and Monte Carlo cross validation [J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 964-968. 展晓日,朱向荣,史新元,等. SPXY 样本划分法及蒙特卡罗交叉验证结合近红外光谱用于橘叶中橙皮苷的含量测定 [J]. 光谱学与光谱分析,2009,29(4): 964-968, 2009, 29(4): 964-968.[23] Ji R S, Chen X Y, Liu S Z, et al. Nondestructive testing of volatile oil of zanthoxylum bungeanum based on hyperspectral technique and IRIV-FOA-ELM algorithm [J]. Laser & Optoelectronics Progress, 2020, 57(20): 394-400. 纪然仕,陈晓燕,刘素珍,等. 基于高光谱技术和IRIV-FOA-ELM算法的花椒挥发油无损检测 [J]. 激光与光电子学进展,2020,57(20): 394-400.[24] Huang F, Zhang X K, Sun L, et al. Vibration spectral component analysis based on genetic algorithm and simulated annealing algorithm [J]. Laser & Optoelectronics Progress, 2020, 57(09): 224-231. 黄凡,张旭坤,孙陆,等. 基于遗传算法和模拟退火算法的振动光谱成分分析算法 [J]. 激光与光电子学进展,2020,57(09): 224-231. |