[1]Psaltis D.Coherent optical information systems[J].science, 2002, 298(5597):1359-1363 [2]Bland-Hawthorn J, Sellars M J, Bartholomew J G.Quantum memories and the double-slit experiment: implications for astronomical interferometry[J].JOSA B, 2021, 38(7):A86-A98 [3]Hunter D K, Chia M C, Andonovic I.Buffering in optical packet switches[J].Journal of lightwave technology, 1998, 16(12):2081-2081 [4]Hunter D K, Cornwell W D, Gilfedder T H, et al.SLOB: A switch with large optical buffers for packet switching[J].Journal of Lightwave Technology, 1998, 16(10):1725-1736 [5]Tanabe T, Notomi M, Kuramochi E, et al.Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity[J].Nature Photonics, 2007, 1(1):49-52 [6]Notomi M, Shinya A, Mitsugi S, et al.Optical bistable switching action of Si high-Q photonic-crystal nanocavities[J].Optics Express, 2005, 13(7):2678-2687 [7]Heinze G, Hubrich C, Halfmann T.Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J].Physical review letters, 2013, 111(3):033601-033601 [8]Hsiao Y F, Tsai P J, Chen H S, et al.Highly efficient coherent optical memory based on electromagnetically induced transparency[J].Physical review letters, 2018, 120(18):183602-183602 [9]Hosseini M, Sparkes B M, Campbell G, et al.High efficiency coherent optical memory with warm rubidium vapour[J].Nature communications, 2011, 2(1):174-174 [10]Wang Y, Li J, Zhang S, et al.Efficient quantum memory for single-photon polarization qubits[J].Nature Photonics, 2019, 13(5):346-351 [11]Afzelius M, Usmani I, Amari A, et al.Demonstration of atomic frequency comb memory for light with spin-wave storage[J].Physical review letters, 2010, 104(4):040503-040503 [12]England D G, Bustard P J, Nunn J, et al.From photons to phonons and back: A THz optical memory in diamond[J].Physical review letters, 2013, 111(24):243601-243601 [13]Lvovsky A I, Sanders B C, Tittel W.Optical quantum memory[J].Nature photonics, 2009, 3(12):706-714 [14]Lee H, Chen T, Li J, et al.Ultra-low-loss optical delay line on a silicon chip[J].Nature communications, 2012, 3(1):867-867 [15]Sayrin C, Clausen C, Albrecht B, et al.Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms[J].Optica, 2015, 2(4):353-356 [16]Gouraud B, Maxein D, Nicolas A, et al.Demonstration of a memory for tightly guided light in an optical nanofiber[J].Physical review letters, 2015, 114(18):180503-180503 [17]Corzo N V, Raskop J, Chandra A, et al.Waveguide-coupled single collective excitation of atomic arrays[J].Nature, 2019, 566(7744):359-362 [18]Sipahigil A, Evans R E, Sukachev D D, et al.An integrated diamond nanophotonics platform for quantum-optical networks[J].Science, 2016, 354(6314):847-850 [19]Burek M J, Meuwly C, Evans R E, et al.Fiber-coupled diamond quantum nanophotonic interface[J].Physical Review Applied, 2017, 8(2):024026-024026 [20]Zhong T, Kindem J M, Miyazono E, et al.Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals[J].Nature communications, 2015, 6(1):8206-8206 [21]Corrielli G, Seri A, Mazzera M, et al.Integrated optical memory based on laser-written waveguides[J].Physical Review Applied, 2016, 5(5):054013-054013 [22]Seri A, Corrielli G, Lago-Rivera D, et al.Laser-written integrated platform for quantum storage of heralded single photons[J].Optica, 2018, 5(8):934-941 [23]Zhou Z Q, Chen D L, Jin M, et al.A transportable long-lived coherent memory for light pulses[J].Science bulletin, 2022, 67(23):2402-2405 [24]Chen F, de Aldana J R V.Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining[J].Laser & Photonics Reviews, 2014, 8(2):251-275 [25]Liu C, Zhou Z Q, Zhu T X, et al.Reliable coherent optical memory based on a laser-written waveguide[J].Optica, 2020, 7(2):192-197 [26]Tittel W, Afzelius M, Chaneliere T, et al.Photon‐echo quantum memory in solid state systems[J].Laser & Photonics Reviews, 2010, 4(2):244-267 [27]Liu D C, Li P Y, Zhu T X, et al.On-Demand storage of photonic qubits at telecom wavelengths[J].Physical Review Letters, 2022, 129(21):210501-210501
|