J4 ›› 2009, Vol. 26 ›› Issue (5): 591-595.

• 非线性光学 • 上一篇    下一篇

非线性微腔的光学双稳态

金铱 陈宪锋 黄正逸 沈小明 蒋美萍   

  1. 江苏工业学院数理学院 常州 213164
  • 出版日期:2009-09-28 发布日期:2009-08-27
  • 基金资助:

    江苏省高校自然科学基础研究基金(07KJD140036); 江苏工业学院科技基金(JS200802)

Optical bistability of a nonlinear microcavity

JIN Yi, CHEN Xian-Feng, HUANG Zheng-Yi, SHEN Xiao-Ming, JIANG Mei-Ping   

  1. School of Physics and Mathematics, Jiangsu Polytechnic University, Changzhou 213164, China
  • Published:2009-09-28 Online:2009-08-27
  • Contact: 金铱, 男, 1964年生, 江苏工业学院数理学院讲师, 主要从事光学材料方面的研究. E-mail:jin-y@163.com

摘要:

基于F-P腔理论,通过引入有效折射率概念,研究了非线性微腔的光学双稳态,给出了相应的解析表达式。理论曲线与其它文献的数值模拟结果相吻合。研究表明,系统要产生双稳态现象,必须对入射光预置一定的偏移量。若介质是聚焦型Kerr介质,入射光波必须红移;反之则蓝移。临界的偏移量是腔共振模线宽的0.866倍。

关键词: 非线性光学, 双稳态, 有效折射率, Kerr介质, F-P腔

Abstract:

Based on Fabry-Perot cavity’s theories and efficiency refractive index, the optical bistability of a nonlinear microcavity is studied, and the corresponding mathematical formula are deduced. The curves of these theories are well fitted with those of numerical simulation in other reported reviews. Our investigation shows that appropriate frequency-shifting should be put on the incident light in order to produce bistability for a nonlinear system. If the system is composed of focusing nonlinear medium, the frequency must be red-shifted, otherwise it must be blue-shifted. The magnitude of critical shifting is 0.866 times of the width of microcavity resonance mode.

Key words: nonlinear optics, bistability, efficiency refractive index, Kerr medium, Fabry-Perot cavity