J4 ›› 2010, Vol. 27 ›› Issue (6): 683-687.

• 量子物理 • 上一篇    下一篇

mBBM方程和Vakhneoko方程的显式精确解

郭鹏 张磊 王小云 孙小伟   

  1. 兰州交通大学数理与软件工程学院, 甘肃 兰州 730070
  • 收稿日期:2010-02-05 修回日期:2010-04-05 出版日期:2010-11-28 发布日期:2010-11-19
  • 通讯作者: 郭 鹏(1978-), 男, 陕西富平人,主要从事非线性物理的研究工作。 E-mail:guopenglzjtu@126.com
  • 基金资助:

    甘肃省自然科学基金(0916RJZA047)、兰州交通大学“青蓝”人才工程(QL-06-22A)资助项目

Explicit and exact solutions to the mBBM and Vakhneoko equations

GUO Peng, Zhang-Lei, WANG Xiao-Yun, SUN Xiao-Wei   

  1. School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2010-02-05 Revised:2010-04-05 Published:2010-11-28 Online:2010-11-19

摘要:

应用试探函数方法求解了mBBM方程和Vakhneoko方程.通过引入试探函数,把难于求解的非线性偏微分方程化为易于求解的代数方程,然后用待定系数法确定相应的常数,从而简洁地求得了方程的精确解。

关键词: 非线性方程, 试探函数方法, mBBM方程, Vakhneoko方程, 精确解

Abstract:

The mBBM and Vakhneoko equations are solved by the trial function method. By introducing appropriate trial functions, the nonlinear partial differential equation that is hard to be solved by the usual ways can be reduced to a set of algebraic equation, which can be easily solved, and its related coefficients can be easily determined by the method of undetermined coefficient. Finally, the analytical solution to the equations are successfully derived.

Key words: nonlinear equation, trial function method, mBBM equation, Vakhneoko equation, exact solution

中图分类号: