1. Tan Weihan. Nonlinear and Quantum Optics (非线性与量子光学). Scientific Press, 1996, (in Chinese).
2. Harris S E, Field J E, Imamoglu A. Non linear optical processes using electromagnetically induced transparency [J]. Phys. Rev. Lett., 1990, 64(10):1107-1110.
3. Hakuta K, Marmet L, Stoicheff B P. Electric-field-induced 2nd-harmonic generation with reduced absorption in atomic-hydrogen [J]. Phys. Rev. Lett., 1991, 66(5):596-599.
4. Thompson R I, Stoicheff B P, Zhang G Z, et al. Nonlinear generation of 103 nm radiation with electromagnetically-induced transparency in atomic-hydrogen [J]. Quan. Opt., 1994, 6(4):349-358.
5. Petch J C, Keitel C H, Knight P L, et al. Role of electro-magnetically induced transparency in resonant four-wave-mixing schemes [J]. Phys. Rev. A, 1996, 53(1):543-561.
6. Dorman C, Marangos J P. Resonant sum-difference frequency mixing enhanced by electromagnetically induced transparency in krypton [J]. Phys. Rev. A, 1998, 58(2):4121-4132.
7. Dorman C, Kucukkara I, Marangos J P. Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency [J]. Phys. Rev. A, 1999, 61(1):013802-1-5.
8. Scully M O, Zubairy M S. Quantum Optics. England: Cambridge University Press, 1997.
9. Wu Ying, Yang Xiaoxue. Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis [J]. Phys. Rev. A, 2005, 71(6):053806-1-7.
10. Schmidt H, Imamoglu A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency [J]. Opt. Lett., 1996, 21(23):1936-1939.
11. Harris S E, Hau L V. Nonlinear optics at low light levels [J]. Phys. Rev. Lett., 1999, 82(23):4611-4614.
12. Yan Min, Rickey E G, Zhu Yifu. Nonlinear absorption by quantum interference in cold atoms [J]. Opt. Lett., 2001, 26(8):548-550.
13. Yan Min, Rickey E G, Zhu Yifu. Observation of absorptive photon switching by quantum interference [J]. Phys. Rev. A, 2001, 64(4):041801-1-4.
14. Hou B P, Wang S J, Yu W L. et al. Effect of vacuum-induced coherence on single- and two-photon absorption in a four-level Y-type atomic system [J]. Phys. Rev. A, 2004, 69(5):053805-1-5.
15. Merrian A J, Sharpe S J, Shverdin M, et al. Efficient nonlinear frequency conversion in an all-resonant double-Λ system [J]. Phys. Rev. Lett., 2000, 84(23):5308-5311.
16. Du Dan, Hu Xiangming. Enhancement of nonlinear-optical signals in a cascade three-level system [J]. Acta Physica Sinica (物理学报), 2006, 55(10):5232-5236 (in Chinese).
17. Ye Peixian. Nonlinear Optics (非线性光学). Beijing: Chinese Scientific Press, 1999. 75 (in Chinese).
18. Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts for quantum logic [J]. Phys. Rev. Lett., 1995, 75 (25):4710-4713.
19. Rebic S, Tan M S, Parkins A S, et al. Large Kerr nonlinearity with a single atom [J]. J. Opt. B: Quantum. Semiclass. Opt., 1999, 1(4):490-495.
20. Wang Hai, Goodskey D, Xiao Min. Controlling light by light with three-level atoms inside an optical cavity [J]. Opt. Lett., 2002, 27(15):1354-1356.
21. Imamoglu A, Schmidt H, Woods G, et al. Strongly interacting photons in a nonlinear cavity [J]. Phys. Rev. Lett., 1997, 79(8):1467-1470.
22. Ottaciani C, Vitali D, Artoni M, et al. Polarization qubit phase gate in driven atomic media [J]. Phys. Rev. Lett., 2003, 90(19):197902-1-4.
23. Goren C, Wilson-Gordon A D, Rosenbluh M. et al. Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system [J]. Phys. Rev. A, 2004, 69(6):063802-1-5.
24. Popov A K, Myslivets S A, George T F. Nonlinear interference effects and all-optical switching in optically dense in homogeneously broadened media [J]. Phys. Rev. A, 2005, 71(4):043811-13.
25. Wang Hai, Goorskey D, Xiao Min. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system [J]. Phys. Rev. Lett., 2001, 87(7): 073601-1-4.
26. Wang Hai, Goorskey D, Xiao Min. Dependence of enhanced Kerr nonlinearity on coupling power in a three-level atomic system [J]. Opt. Lett., 2002, 27(4):258-260.
27. Xiao Min. Novel linear and nonlinear optical properties of electromagnetically induced transparency systems [J]. IEEE. J. Quantum Electron, 2003, 9(7):86-92.
28. Kang H, Zhu Yifu. Observation of large Kerr nonlinearity at low light intensities [J]. Phys. Rev. Lett, 2003, 91(9):093601-1-4.
29. Niu Yueping, Gong Shangqing, Li Ru Xin, et al. Giant Kerr nonlinearity induced by interacting dark resonances [J]. Opt. Lett., 2005, 30(24):3371-3373.
30. Niu Yueping, Gong Shangqing. Enhancing Kerr nonlinearity via spontaneously generated coherence [J]. Phys. Rev. A, 2006, 73(5):053811-1-6.
31. Wang Zengbin, Marzlin K, Sanders B C. Large cross-phase modulation between slow copropagating weak pulses in 87Rb [J]. Phys. Rev. Lett., 2006, 97(6):063901-1-4.
32. Li Shujing, Yang Xudong, Cao Xuemin, et al. Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system [J]. Phys. Rev. Lett., 2008, 101(7):073602-1-4.
33. Sinclair G F. Time-dependent cross-phase-modulation in 87Rb [J]. Phys. Rev. A, 2009, 79(2): 023815-1-7.
34. Hou B P, Wei L F, Long G L, et al. Large cross-phase-modulation between two slow pulses by coupled double dark resonances [J]. Phys. Rev. A, 2009, 79(3): 033813-1-7.
35. He Bing, Nadeem M, Bergou J A. Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity [J]. Phys. Rev. A, 2009, 79(3): 035802-1-4.
36. Mogilevtsev D, Tomáš Tyc, Korolkova N. Influence of modal loss on quantum state generation via cross-Kerr nonlinearity [J]. Phys. Rev. A 2009, 79(5): 053832-1-12.
37. Rebi? S, Twamley J, Milburn G J. Giant Kerr nonlinearities in circuit quantum electrodynamics [J]. Phys. Rev. Lett., 2009, 103(15):150503-1-4.
38. Ham B S, Shahriar M S, Hemmer P R. Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal [J]. Opt. Lett., 1997, 22(15):1138-1140.
39. Lukin M D, Hemmer P R, Löffler M, et al. Resonant enhancement of parametric processes via radiative interference and induced coherence [J]. Phys. Rev. Lett., 1998, 81(13):2675-2678.
40. Deng L, Payne M G, Garrett W R. Four-wave mixing with short pulses and optimized atomic coherence [J]. Phys. Rev. A, 2001, 63(4):043811-1-8.
41. Deng L, Kozuma M, Hagley E W, et al. Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves [J]. Phys. Rev. Lett., 2002, 88(14):143902-1-3.
42. Wu Ying, Saldana J, Zhu Yigu. Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency [J]. Phys. Rev. A, 2003, 67(1):013811-1-5.
43. Wu Ying, Wang Xiaoxue. Highly efficient four-wave mixing in a double-lambda system in an ultra-slow propagation regime [J]. Phys. Rev. A, 2004, 70(5): 053818-1-5.
44. Wu Ying. Two-color ultraslow optical solitons via four-wave mixing in cold atom [J]. Phys. Rev. A, 2005, 71(6):053820-1-5.
45. Kang H, Hernande G, Zhu Yifu. Slow light six-wave mixing at low light intensities [J]. Phys. Rev. Lett., 2004, 93(7):073601-1-4.
46. Paspalakis E, Knight P L. Transparency, slow light and enhanced nonlinear optics in a four-level scheme [J]. J. Opt. B: Quantum. Semiclass. Opt., 2002, 4: S372-S375.
47. Niu Yueping, Li Ruxin, Gong Shangqing. High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system [J]. Phys. Rev. A, 2005, 71(4):043819-1-5.
48. Hashmi F A, Bouche M A. Coherent control of the effective susceptibility through wave mixing in a duplicated two-level system [J]. Phys. Rev. Lett., 2008, 101(21):213601-1-4.
49. Du Yigang, Zhang Yanpeng, Zuo Cuicui, et al. Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency [J]. Phys. Rev. A, 2009, 79(6):063839-1-9.
50. Zhang Yanpeng, Nie Zhiqiang, Zheng Huaibin, et al. Electromagnetically induced spatial nonlinear dispersion of four-wave mixing [J]. Phys. Rev. A, 2009, 80(1): 013835-1-4.
51. Zhang Yanpeng, Brown A W, Xiao Min. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows [J]. Phys. Rev. Lett., 2007, 99(12):123603-1-4.
52. Zhang Yanpeng, Khadka U, Anderson B, et al. Temporal and spatial interference between four-wave mixing and six-wave mixing channels [J].Phys. Rev. Lett., 2009, 102(1):013601-1-4. |