[1] Miura M R, Backlund transformation[M]. Berlin: Springer-Verlag,1978.
[2] Gu Chaohao, Hu hesheng, Zhou Zixiang. Darboux Transformation in Solitons Theory and Geometry Applications[M]. Shanghai: Shanghai Science Technology Press,1999.
[3] Hirota R. Exact solution of the Korteweg-de Vries for multiple collisions of solutions[J]. Phys. Rev. Lett., 1971, 27:1192-1194.
[4] Wang Mingliang, Solitary wave solutions for variant Boussinesq equations[J]. Phys. Lett. A., 1996, 199: 169-172.
[5] Wang Mingliang, Zhou Yubin, Li Zhibin. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys. Lett. A., 1996,216:67-75.
[6] Weiss J, Tabor M, Carnevale G. The Painleve Property for Partial Differential Equations[J]. J. Math. Phys., 1983,24:552-564.
[7] Liu Shikuo, Liu Shida. Nonlinear Equations of Physics(物理学中的非线性方程)[M]. Beijing: Beijing University Press, 2000 (in Chinese).
[8] Nayfeh A H. Perturbation Methods[M]. New York: John Wiley and Sons Inc., 1973.
[9] Liu Shikuo, Fu Zuntao, Liu Shida, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J]. Phys. Lett. A., 2001, 289: 69-74.
[10] Fu Zuntao, Liu Shikuo, Liu Shida, et al. The JEFE method and periodic solutions of two kinds of nonlinear wave equations[J]. Commu. Nonlinear. Sci. Simul., 2003, 8: 67-75.
[11] Xiao Yafeng, Zhang Hongqing. Solutions of Modified Improved Boussinesq equation with extended elliptic function expansion[J]. Journal of Lanzhou University of Technology(兰州理工大学学报), 2004,30(1): 9-12 (in Chinese).
[12] Yan Zhenya. The extended Jacobian elliptic functions expansion method and its application in the generalized Hirota-Satsuma coupled KdV systems [J]. Chaos, Solitons and Fractals, 2003, 15(3): 575-583.
[13] Tian Guichen, Liu Xiqiang. Exact solutions of the general variable coefficient KdV equation with external force Term[J]. Chinese Journal of Quantum Electromics(量子电子学报), 2005,22:339-343(in Chinese).
[14] Zheng Bin. New soliton solutions to (2+1)- dimensional breaking soliton equation[J]. Chinese Journal of Quantum Electromics(量子电子学报),2006,23:451-455(in Chinese).
[15] Liu Na, Liu Xiqiang. Symmetries, new exact solutions and conservation laws of (2+1)-dimensional Boiti- Leon-Manna-Pempinelli equation[J]. Chinese Journal of Quantum Electromics(量子电子学报), 2008, 25(5):546-552.
[16] Taogetusang,sirendaoerji. Jacobi elliptic function exact solutions of sine-Gordon equation[J].Chinese Journal of Quantum Electronics(量子电子学报), 2009,26(3):278-287(in Chinese).
[17] Liu Shikuo, Fu Zuntao, Liu Shida, et al. Lamé equation and multi-order exact solutions to nonlinear evolution equations [J]. Chaos, Soliton and Fractals, 2004, 19:795-801.
[18] Liu Shikuo, Chen Hua, Fu Zuntao, et al. Lamé function and invariants of multi-order exact solutions among nonlinear evolution equations [J]. Acta Phys. Sin.(物理学报), 2003, 52(8):1842-1847(in Chinese).
[19] Fu Zuntao, Liu Shikuo, Liu Shida. New multi-order exact solutions to a kind of nonlinear evolution equations [J]. Acta Phys. Sin.(物理学报), 2003, 52(12): 2949-2953(in Chinese).
[20] Fu Zuntao, Yuan Naiming, Chen Zhe, et al. Multi-order exact solutions to the Drinfel’d-Sokolov-Wilson equations [J]. Phys. Lett. A., 2009, 373:3710-3714.
[21] Fu Zuntao, Yuan Naiming, Mao Jiangyu, et al. New Lame equation and its application to nonlinear equations [J]. Phys. Lett. A., 2009, 374: 214-217.
[22] Wang Zhuxi, Guo Dunren. Special functions[M]. Singapore: World Scientific Press, 1989.
[23] Fan Engui. Extended tanh-function method and its application to nonlinear equation[J]. Phys. Lett. A., 2000,277: 212-218.
[24] Kudryashov N A. Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation[J]. Phys. Lett. A., 1990,147: 287-291.
[25] Yan Chuntao. A simple transformation for nonlinear waves[J]. Phys. Lett. A., 1996,224: 77-84.
[26] Dong Zhongzhou,Yu Xichang,Wang ling.Exact travelling wave solutions of the nonlinear coupled KdV equations[J]. Chinese Journal of Quantum Electromies(量子电子学报),2006,23:31-34(in Chinese).
[27] Xiang chunhua,Wang Honglei. Complex traveling wave solution to the Gross-Pitaevskii equation[J]. Chinese Journal of Quantum Electromies(量子电子学报), 2008, 25(3):151-154. |