[1] Ekert A, Quantum cryptography based on Bell’s theorem [J]. Phys. Rev. Lett., 1991, 67(6): 661-663.
[2] Bennett C H, Brassard G, Crepeau C, et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70(13): 1895-1899.
[3] Buzek V, Hillery M, Quantum copying: Beyond the no-cloning theorem [J]. Phys. Rev. A, 1996, 54(3): 1844-1852.
[4] Zhang W H, Dai J L, Cao Z L, Yang M, A class of optimal phase-covariant quantum cloning [J]. Chinese Journal of Quantum Electronics, 2011, 28(5): 583-687.
[5] Hillery M, Buzek V, Berthiaume A, Quantum secret sharing [J]. Phys. Rev. A, 1999, 59(3): 1829-1834.
[6] Lo H K, Classical-communication cost in distributed quantum-information processing: A generalization of quantum communication complexity [J]. Phys. Rev. A, 2000, 62(1): 012313.
[7] Bennett C H, DiVincenzo D P, Shor P W, et al., Remote state preparation [J]. Phys. Rev. Lett., 2001, 87(7): 077902.
[8] Pati A K, Minimum classical bit for remote preparation and measurement of a qubit [J]. Phys. Rev. A, 2000, 63(1): 014302.
[9] Devetak I, Berger T, Low-entanglement remote state preparation [J]. Phys. Rev. Lett., 2001, 87(19): 197901.
[10] Berry D W, Sanders B C, Optimal remote state preparation [J]. Phys. Rev. Lett., 2003, 90(5): 057901.
[11] Leung D W, Shor P W, Oblivious remote state preparation [J]. Phys. Rev. Lett., 2003, 90(12): 127905.
[12] Kurucz Z, Adam P, Janszky J, General criterion for oblivious remote state preparation [J]. Phys. Rev. A, 2006, 73(5): 062301.
[13] Hayashi A, Hashimoto T, Horibe M, Remote state preparation without oblivious conditions [J]. Phys. Rev. A, 2003, 67(5): 052302.
[14] Abeyesinghe A, Hayden P, Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication [J]. Phys. Rev. A, 2003, 68(6): 062319.
[15] Ye M Y, Zhang Y S, Guo G C, Faithful remote state preparation using ?nite classical bits and a non-maximally entangled state [J]. Phys. Rev. A, 2004, 69(2): 022310.
[16] Liu J M, Feng X L, Oh C H, Remote preparation of a three-particle state via positive operator-valued measurement [J]. J. Phys. B, 2009, 42: 055508.
[17] Wang D, et al., Remote preparation of a class of three-qubit states [J]. Opt. Commun., 2008, 281(4): 871-875.
[18] Nguyen B A, Kim J, Joint remote state preparation [J]. J. Phys. B, 2008, 41: 095501.
[19] Nguyen B A, Joint remote state preparation via W and W-type states [J]. Opt. Commun., 2010, 283(20): 4113-4117.
[20] Zhan Y B, Hu B L, Ma P C, Joint remote preparation of four-qubit cluster-type states [J]. J. Phys. B, 2011, 44: 095501.
[21] Kurucz Z, Adam P, Kis Z, Janszky J, Continuous variable remote state preparation [J]. Phys. Rev. A, 2005, 72: 052315.
[22] Xiang G Y, Li J, Bo Y, Guo G C, Remote preparation of mixed states via noisy entanglement [J]. Phys. Rev. A, 2005, 72: 012315.
[23] Liu W T, Wu W, Ou B Q, et al., Experimental remote preparation of arbitrary photon polarization states [J]. Phys. Rev. A, 2007, 76: 022308.
[24] Wu W, Liu W T, Chen P X, et al., Deterministic remote preparation of pure and mixed polarization states [J]. Phys. Rev. A, 2010, 81: 042301.
[25] Dur W, Vidal G, Cirac J I, Three qubits can be entangled in two inequivalent ways [J]. Phys. Rev. A, 2000, 62: 062314.
[26] Roos C F, Riebe M, Haffner H, et al., Control and Measurement of Three-Qubit Entangled States [J]. Science, 2004, 304: 1478-1480.
[27] Aharonov Y, Albert D Z, Vaidman L, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100 [J]. Phys. Rev. Lett., 1988, 60(14): 1351-1354.
[28] Tian L, Lloyd S, Orlando T P, Projective measurement scheme for solid-state qubits [J]. Phys. Rev. B, 2003, 67(22): 220505(R).
[29] Plantenberg J H, De Groot P C, Harmans C J P M, et al., Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits [J]. Nature, 2007, 447: 836-839. |