[1] Wliczek. F. Magnetic flux, angular momentum, and statistics [J]. Phys. Rev. Lett, 1982, 48(17): 1144-1146.
[2] Wliczek. F. Quantum Mechanics of Fractional-Spin Particles [J]. Phys. Rev. Lett, 1982, 49(14): 957-959.
[3] Wu. Y. S. Multiparticle quantum mechanics obeying fractional statistics [J]. Phys. Rev. Lett, 1984, 53(2):111-114.
[4] Liang J. Q, Ding. X. X. Path integral in multiply connected spaces and the fractional angular momentum quantization[J]. Phys. Rev. A, 1987, 36:4149-4154.
[5] Liang. J. Q.. Analysis of the experiment to determine the spectrum of the angular momentum of a charged-Boson, magnetic-flux-tube composite and the Aharonov-Bohm effect [J]. Phys. Rev. Lett, 1984, 53(9):859-862.
[6] Stern.A.. Anyons and the quantum Hall effect-A pedagogical review [J]. Ann. Phys. 2008, 323:204-249.
[7] Nayak C., Simon S. H., Stern A., Freedan M., Sarma S. D.. Non-Abelian anyons and topological quantum computation [J]. Rev. Mod. Phys., 2008, 80:1083-1159.
[8] Zhang Cheng-qiang, Ji Chang-jian, Liu Meng, Tan Xia, Li Hua. Decoherence in two-state quantun systems through an external controllable driving field without rotating wave approximation[J]. Chinese Journal of Quantum Electronics(量子电子学报) , 2011, 28(6): 705-709 (in Chinese).
[9] Chen. Y. F.. Geometry of classical periodic orbits and quantum coherent states in coupled oscillators with SU(2) transformations[J]. Phys. Rev. A, 2011, 83: 032124-032131.
[10] Makowski A. J., Gorska K. J.. Fractional and Integer Angular Momentum Wavefunctions Localized on Classical Orbits: the case of E=0[J]. J. Phys. A: Math. Theor, 2007, 40: 11373-11383.
[11] Liang J. Q., Wei L. F.. The new process of quantum physics(量子物理新进展)[M]. Beijing: Science Press : 2011:49-66 (in Chinese). |