J4 ›› 2013, Vol. 30 ›› Issue (6): 678-683.

• 量子物理 • 上一篇    下一篇

(2+1)维AKNS方程的对称约化和新的非行波精确解

康晓蓉,鲜大权   

  1. 西南科技大学理学院,四川 绵阳 621010
  • 收稿日期:2013-06-20 修回日期:2013-07-15 出版日期:2013-11-28 发布日期:2013-11-13
  • 作者简介:康晓蓉 ( 1970 - ),四川汉源人,讲师,研究方向为可积系统理论与应用。
  • 基金资助:

    四川省教育厅重点科研基金(10ZA021)、国家自然科学基金(10971169)和国家自然科学基金与中物院联合基金(11076015)资助项目

Symmetry reduction and new non-traveling wave solutions of (2+1)-dimensional AKNS equation

KANG Xiao-rong,XIAN Da-quan   

  1. School of Sciences, Southwest University of Science and
    Technology, Mianyang 621010, China
  • Received:2013-06-20 Revised:2013-07-15 Published:2013-11-28 Online:2013-11-13

摘要:

利用Lie群方法将(2+1)维AKNS方程约化成(1+1)维非线性偏微分方程。对约化方程应用扩展同宿测试法获得了AKNS方程的一些新的非行波精确解,这些结果丰富了该方程的可积性内涵及(2+1)维非线性波传播的动力学行为。

关键词: 非线性方程, (2+1)维AKNS方程, Lie群方法, 扩展同宿测试法, 非行波精确解

Abstract:

The (2+1)-dimensional AKNS equation was reduced to (1+1)-dimensional nonlinear partial differential equation by applying the Lie group method. As to the reduced equation, some new non-traveling wave exact solutions were obtained with extended homoclinic test approach. These results enrich the connotations of integrability of the equation and dynamical behavior of (2+1)-dimensional nonlinear wave propagation.

Key words: nonlinear equation, (2+1)-dimensional AKNS equation, Lie group method, extended homoclinic test method, non-traveling wave exact solutions

中图分类号: