J4 ›› 2014, Vol. 31 ›› Issue (3): 340-347.

• 激光应用 • 上一篇    下一篇

基于高阶辛算法的纳米器件本征问题仿真

沈 晶,况晓静,张 量,曹欣远,陈明生,张忠祥   

  1. 合肥师范学院电子信息工程学院,安徽 合肥 230061
  • 出版日期:2014-05-28 发布日期:2014-05-27
  • 通讯作者: 沈晶(1984-), 女, 安徽安庆人, 博士,讲师,主要研究方向:计算电磁学。
  • 基金资助:
    国家自然科学基金项目(资助号:61301062, 51207041,61001033),安徽省自然科学基金面上项目(1208085MF92), 安徽省优秀人才基金重点项目:2013SQRL065ZD,安徽省高等学校省级自然科学研究重点项目:KJ2014A206

Simulation of Nanodevices Eigenvalue Problems Based on Higher-order Symplectic Algorithm

SHEN Jing,KUANG Xiao Jing,ZHANG Liang,Cao Xin Yuan, Chen Ming Sheng, Zhang Zhong Xiang   

  1. School of Electronic Engineering,Heifei Normal University,, Hefei 230061, China
  • Published:2014-05-28 Online:2014-05-27

摘要: 研究精确和高效的数值方法是现代纳米器件建模和优化的重要目标之一,而分析大部分纳米器件特性的切入点是确定器件结构的能量本征值和能量本征态。本文提出了一种新的算法—高阶辛时域有限差分法(SFDTD(3,4): symplectic finite-difference time-domain)求解含时薛定谔方程。在时间上采用三阶辛积分格式离散,空间上采用四阶精度的同位差分格式离散,建立了求解含时薛定谔方程的高阶辛时域有限差分算法。将高阶辛算法SFDTD(3,4)用于一维量子阱中盒中粒子和谐振子的仿真中,实验结果表明SFDTD(3,4)法比传统的时域有限差分算法以及高阶时域有限差分算法更加准确,适用于对纳米器件本征问题的长时间仿真。

关键词: 量子光学, 辛积分, 时域有限差分, 薛定谔方程, 纳米器件本征问题

Abstract: Numerical solutions of Schr?dinger equation have become increasingly important because of the tremendous demands for the design and optimization of nanodevices where quantum effects are significant or dominate. Using the three-order symplectic integrators and fourth-order collocated spatial differences, a high-order symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent Schr?dinger equation. A detailed numerical study on 1D quantum eigenvalue problems is carried out. Compared with FDTD(2,2) and FDTD(2,4), the simulation results of quantum wells and harmonic oscillators strongly confirm that the explicit SFDTD scheme is well suited for a long-term simulation.

Key words: quantum optics, symplectic integrators, finite-difference time-domain, Schr?dinger equation, nanodevices eigenvalue problems

中图分类号: