J4 ›› 2014, Vol. 31 ›› Issue (5): 541-546.

• 量子物理 • 上一篇    下一篇

一维Tonks-Girardeau原子气区域中Gross-Pitaevskii方程简化模型的无穷序列新解

阿如娜,套格图桑   

  1. 内蒙古师范大学数学科学学院,内蒙古 呼和浩特 010022
  • 收稿日期:2013-11-28 修回日期:2014-01-25 出版日期:2014-09-28 发布日期:2014-09-17
  • 通讯作者: 套格图桑(1964-)内蒙古通辽人,博士,教授,孤立子与可积系统理论及其应用. E-mail:tgts@imnu.edu.cn
  • 作者简介:阿如娜(1991-),女,内蒙古通辽人,研究生,孤立子与可积系统理论及其应用. E-mail: 369708905@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11361040)、内蒙古自治区高等学校科学研究基金(NJZY12031)和内蒙古自治区自然科学基金(2010MS0111)资助

New infinite sequence solutions for simplified model of GP equation in the 1D-Tonks-Girardeau gas

Aruna,Taogetusang   

  1. College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022, China
  • Received:2013-11-28 Revised:2014-01-25 Published:2014-09-28 Online:2014-09-17

摘要: 利用Riccati方程的B?cklund变换和解的非线性叠加公式等相关结论,构造了含五次方的一维非线性薛定谔方程的由三角函数、双曲函数和有理函数组成的无穷序列新解。

关键词: GP equation; Riccati equation ; nonlinear superposition formula; New infinite sequence solutions

Abstract: By using the related conclusions of B?cklund transform of Riccati equation and nonlinear superposition formula, the paper constructs the new infinite sequence solutions of one-dimensional nonlinear Schrodinger equation with the five party consisting of trigonometric function, hyperbolic function and rational function.

Key words: GP equation; Riccati equation ; nonlinear superposition formula; New infinite sequence solutions

中图分类号: