[1]Liu J T. Reflection on low-carbon development of coal energy in China[J].Journal of China University of Mining and Technology(Social Sciences),(中国矿业大学学报:社会科学版)2011,12(1):5-12.(in Chinese).
[2]Thorns T.Developments for the Precombustion Removal of Inorganic Sulfur from Coal[J].Fuel Processing Technology,1995,43:123-128.
[3]Lei J L, Zhou M, Yan D, et al. Research progress of desulfurization from coal with microwave technology[J].Chemical Production and Technology (化工生产与技术),2012,19(1):43-46(in Chinese).
[4]Yan D, Zhou M. Study Status and Development on Coal Microwave Desulfurization Technology[J].Coal Science and Technology,(煤炭科学技术)2012,40(7):125-128. (in Chinese).
[5]Sheng Yu hang, Tao Xiuxiang,Xu Ning. Experimental study on influence factors of coal desulfurization under microwave irradiation[J].China Coal(中国煤炭), 2012,38(4):80-82.(in Chinese).
[6]魏蕊娣.微波联合超声波强化氧化脱除煤中硫[D].太原理工大学硕士学位论文,2011.
[7]Silva A S V, Weinschutz R, Yamamoto C I, et al. Catalytic cracking of light gas oil using microwaves as energy source[J]. Fuel,2013, 106:632-638.
[8]Madriz L,Carrero H, Dominguez J R,et al. Catalytic hydrotreatment in reverse microemulsions under microwave irradiation[J].Fuel, 2013,112:338-346.
[9]Shang H, Zhang H C, Du W,et al. Development of microwave assisted oxidative desulfurization of petroleum oils: A review[J]. Journal of Industrial and Engineering Chemistry, 2013,19:1426-1432.
[10]Shang H, Du W, Liu Z C, et al. Development of microwave induced hydrodesulfurization of petroleum streams:A review[J]. Journal of Industrial and Engineering Chemistry, 2013,19:1061-1068.
[11]Xia W C, Yang J G, Liang C. Effect of microwave pretreatment on oxidized coal flotation[J]. PowderTechnology,2013,233:186-189.
[12]Ge L C, Zhang Y W, Wang Z H, et al. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals[J]. Energy Conversion and Management, 2013,71:84-91.
[13]Bardajee G R.Microwave-assisted solvent-free synthesis of fluorescent naphthalimide dyes[J]. Dyes and Pigments, 2013,99:52~58.
[14]Wei J M,Zhang F P,Zhang J X. Effects of Cu doping on electronic structure and electrical transport properties of ZnO oxide[J].Chinsese Journal of Quantum Electronics(量子电子学报),2014,31(3):372-378(in Chinese).
[15]Liang X R, Wang G, Jiang Y L, et al.Investigation on effects of substitution position of conmarin on the second-order nonlinear optical properties by DFT method[J]. Chinsese Journal of Quantum Electronics(量子电子学报),2012,29(4):485-490(in Chinese).
[16] Feng Xiumei,Chen Jin, Li Ning,et al.Study on electromagetid properties of anthracite and soft coal in microwave field[J].Journal of Taiyuan University of Technology(太原理工大学学报), 2007,38(5):405-407.(in Chinese).
[17]Hennico G, Delhalle J, Raynaud M, et al.An ab initio study of the electric field influence on the electron distribution of H CN, CH3 CN, CH2 CH CN, and CH2 C (CN) [J].Chemical Physics Letters,1988,152(2–3):207-214.
[18]Ramos M, Alkorta I, Elguero J, et al. Theoretical Study of the Influence of Electric Fields on Hydrogen-Bonded Acid?Base Complexes[J].Journal of Physical Chemistry,A,1997,101 (50): 9791-9800.
[19]Aschi M, Spezia R, Nola A D, et al.A first-principles method to model perturbed electronic wavefunctions: the effect of an external homogeneous electric field[J]. Chemical Physics Letters,2001,344(3–4):374-380.
[20]Kawabata H,Nishimura Y,Yamazaki I,et al.Electric field effects on fluorescence of methylene-linked compounds of phenanthrene and N,N-Dimethylaniline in a poly(methyl methacrylate) polymer film[J].Journal of Physical Chemistry,A,2001,105 (45):10261-10270.
[21]Ana-Maria C C and Anna I K.Electronic structure of the π-bonded Al–C2H4 complex:Characterization of the ground and low-lying excited states[J]. Journal of Chemical Physics,2003,118(24):10912-10918.
[22]James B.Foresman, Martin Head-Gordon,John A.Pople,Michael J.Frisch toward a systematic molecular orbital theory for excited states[J].Journal of Physical Chemistry,1992, 96 (1):135-149.
[23]David J T and Nicholas C. Handy. Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities[J]. Journal of Chemical Physics, 1998,109(23):10180-10189.
[24]Bauernschmitt R,Ahlrichs R.Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J].Chemical Physics Letters,1996,256(4–5):454-464.
[25]Adamo C, Barone V. Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model for organic free radicals[J]. Chemical Physics Letters, 1999, 314(1–2):152-157.
[26]Chaudhuri R K, Mudholkar A, Freed K F, et al. Application of the effective valence shell Hamiltonian method to accurate estimation of valence and Rydberg states oscillator strengths and excitation energies for π electron systems[J].Journal of Chemical Physics,1997,106(22):9252-9264.
[27]Cooper G, Olney T N, Brion CE. Absolute UV and soft X-ray photo absorption of ethylene by high resolution dipole spectroscopy[J].Chemical Physics,1995,194 (1):175-184.
[28]Grimme S.Density functional calculations with configuration interaction for the excited states of molecules[J].Chemical Physics Letters,1996, 259(1–2):128-137.
[29]Ding J N,Kan B,Yuan N Y,et al.The effect of external electric fields on the electronic structure of (5,5)/(10,0) metal–semiconductor single wall carbon nanotube intramolecule junction[J].Physica E,2010,42:1590-1596.
[30]Zhang S L,Zhang Y H,Huang S P,et al.Theoretical investigation of electronic structure and fieldemission properties of carbon nanotube–ZnO nanocontacts[J]. Carbon,2011,49:3835-3841.
[31]Surya V J,Iyakutti K,Mizuseki H,et al.First principles study on desorption of chemisorbed hydrogen atoms from single-walled carbon nanotubes under external electric field[J]. International Journal of hydrogen energy,2011,36:13645-13656.
[32]Zhang Z,Wang J Y, Ning M,et al.Field ionization effect on hydrogen adsorption over TiO2-coated activated carbon[J]. International Journal of hydrogen energy, 2012,37:16018-16024.
[33]Liu W,Zhao Y H,Li Y,et al.A reversible switch for hydrogen adsorption and desorption:electric fields [J].Physical ChemistryChemical Physics2009;11:9233-9240.
[34]Kim C, Kim B, Lee S M, et al.Effect of electric field on the electronic structures of carbon nanotubes [J].Applied Physics Letters,2001,79:1187-1189.
[35]Shtogun Y V,Woods L M.Electronic structure modulations of radially deformed single wall carbon nanotubes under transverse external electric fields [J]. Journal of Physical Chemistry C,2009,113:4792-4796.
[36]Kan B,Ding J,Yuan N,et al.Transverse electric field-induced deformaton of armchair single-walled carbon nanotube[J].Nanoscale ResearchLetters,2010,5:1144-1149.
[37]Ehinon D,Baraille I and Rérat M.Polariabilities of carbon nanotubes:importance of the crystalline orbitals relaxation in presence of an electric field[J].International Journal of Quantum Chemistry,2011,111(4):797-806.
[38]Liu W,Zhao Y H, Nguyen J,et al.Electric field induced reversible switch in hydrogen storage based on single-layer and bilayer graphemes[J]. Carbon,2009;47(15):3452-3460.
[39]Shi S, Hwang J Y,Li X,et al.Enhanced hydrogen sorption on carbonaceous sorbents under electric field[J]. International Journal of hydrogen energy, 2010,35(2):629-631.
[40]Zhou J,Wang Q,Sun Q,et al.Electric field enhanced hydrogen storage on polarizable materials substrates[J].Proceedings of the National Academy of Sciences,2010,107(7):2801-2806. |