J4 ›› 2016, Vol. 33 ›› Issue (2): 148-152.

• 图像与信息处理 • 上一篇    下一篇

散斑密度对单像素计算成像系统的影响分析

李靖 胡海芝   

  1. 周口师范学院计算机科学与技术学院,河南 周口,466001
  • 收稿日期:2015-09-14 修回日期:2015-12-21 出版日期:2016-03-28 发布日期:2016-03-28
  • 通讯作者: 李靖(1982- ),女,河南周口人,讲师,硕士。研究方向:图像处理,服务计算,传感器网络 E-mail:lijingj_1982@126.com
  • 基金资助:
    河南省软科学研究项目(132400411365);河南省高等学校重点科研项目(15B520046);河南省科技公关计划项目(2102210575)

Influence of Speckle Density on Single Pixel Imaging System

LI Jing,HU Haizhi   

  1. Zhoukou Normal University, School of Computer Science and Technology, Zhoukou 466001, China
  • Received:2015-09-14 Revised:2015-12-21 Published:2016-03-28 Online:2016-03-28

摘要: 散斑统计特性对单像素成像系统的影响已有了大量的研究,但散斑密度对该系统的影响还没有研究。本文采用计算机仿真分别对1bit和8bits的场景图像进行了研究,结果表明随着采样数的增加,图像复原质量会变好。在1bit场景图像的情况下,图像质量随着散斑密度的增加会先变好后变差,即散斑密度处于中间值时获取的图像质量最好;但对于8bits场景的图像,在采样数较小时图像质量随着散斑密度的增加会先变好后变差,然而当采样数变大时,图像质量随着散斑密度的增加,图像质量会先变差后变好。虽然采用越多的采样数可以获得越高质量的图像,但是采样数的增加会降低单像素成像系统的效率。散斑密度的研究为减弱这一缺点提供了很好地参考,具有一定的实际应用价值。

关键词: 单像素成像;散斑密度;压缩感知

Abstract: There are a lot of papers about the influence of the speckle statistical on the single pixel imaging system, but influence of the Speckle density on single pixel imaging system has not been studied. This paper uses the computer simulation to recover the 1 bit and 8bits images, and the results show that the quality of the recovered images will be better with the increase of sample number. In the case of 1 bit image, the quality of the recovered image will be good and then poor with the increase of the speckle density, and the best image can be obtained in the middle value of the speckle density. However, for the 8 bits image, when the number of the sample of speckle is small, the quality of the recovered image will be good and then poor with the increase of the speckle density; and vice versa. The more speckles are employed, the better recovered image will be obtained. However, it will reduce the efficiency of the single pixel imaging system. The research of the speckle density provides a good method for weaken this drawback, and it has some practical values.

Key words: Single Pixel Imaging System; Speckle Density; Compressed sensing