[1] Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, 46(1): 39-59.
[2] Inuiguchi M, Yoshioka Y, Kusunoki Y. Variable-precision dominance-based rough set approach and attribute reduction[J]. International Journal of Approximate Reasoning, 2009, 50(8):1199-1214.
[3] Sucharita Mitra, Madhuchhanda Mitra, Chaudhuri B B, A rough-set-based inference engine for ECG classification [J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6):2198-2206.
[4] Qian Yuhua, Liang Jiye, Dang Chungyin. Incomplete multigranulation rough set [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40 (2): 420-431.
[5] Yao Yiyu, She Yanhong. Rough set models in multigranulation spaces [J]. Information Sciences, 2016, 327: 40-56.
[6] Qian Yuhua, Liang Jiye, Witold Pedrycz, et al. Positive approximation: an accelerator for attribute reduction in rough set theory [J]. Artificial Intelligence, 2010, 174: 597-618.
[7] Susmaga R. Reducts and constructs in classic and dominance-based rough sets approach [J]. Information Sciences, 2014, 271: 45-64.
[8] Zhao Suyun, Tsang Eric C C, Chen Degang, et al. Building a rule-based classifier—A fuzzy-rough set approach [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(5) 624-638
[9] Zhao Suyun, Chen Hong, Li Cuiping, et al. RFRR: Robust fuzzy rough reduction[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(5): 825-841.
[10] Ye Mingquan, Wu Xindong, Hu Xuegang, et al. Knowledge reduction for decision tables with attribute value taxonomies. Knowledge-Based Systems, 2014, 56(1): 68-78.
[11] Wong S K M, Ziarko W. On optimal decision rules in decision tables[J]. Bulletin of Polish Academy of Science, 1985, 33(11): 693-696.
[12] Han K H, Kim J H. Quantum-inspired evolutionary algorithms with a new termination criterion, gate, and two-phase scheme[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 156-169.
[13] Li P, Li S. Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinate of qubits [J]. Neurocomputing, 2008, 72(1/2/3):581-591.
[14] Ding Weiping, Wang Jiandong, Guan Zhijin, et al. Enhanced minimum attribute reduction based on quantum-inspired shuffled frog leaping algorithm[J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 426-434.
[15] Shang Ronghua, Jiao Licheng, Ren Yujing, et al. Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization[J]. Soft Compution, 2014, 18:743-756.
[16] Li Sheng, Zhang Peilin, Li Bing, et al. Quantum GA-PLS for feature selection method and its application[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(2) 194-201.(in Chinese)
[17] Li Deyi, Liu Changyu, Gan Wenyan. A new cognitive model: cloud model[J]. International Journal of Intelligent Systems, 2009, 24: 357-375.
[18] Li Deyi, Du Yi. Artificial intelligence with uncertainty[M]. Chapman & Hall/CRC Taylor & Francis Group, 2008.
[19] Yang Xiaojun, Yan Liaoliao, Peng Hui, et al. Encoding words into Cloud models from interval-valued data via fuzzy statistics and membership function fitting[J]. Knowledge-Based Systems, 2014, 55:114-124.
[20] Li Mingwei, Hong Weichiang, Kang Haigui. Urban traffic flow forecasting using Gauss–SVR with cat mapping, cloud model and PSO hybrid algorithm[J]. Neurocomputing, 2013, 99: 230-240.
[21] UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/.
[22] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
[23] Prastawa M, Gilmore J H, Lin W, et al. Automatic segmentation of MR images of the developing newborn brain[J].
Medical Image Analysis, 2005, 9 (5): 457-466.
[24] Shattuck D W, Leahy R M. Automated graph-based analysis and correction of cortical volume topology[J]. IEEE Transaction on Medical Imaging, 2011, 20: 1167-1177.
[25] Dice L R. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3): 297-302.
|