[1] V\'{a}zquez L, Streit L, P\'{e}rez-Garc\'{i}a V. Nonlinear Klein-Gordon and Schr\"{o}dinger Systems: Theory and Applications. Singapore:World Scientific, 1997.[2] Kivshar Y S, Agrawal G P. Optical Solitons: From Fibers to Photonic Crystals. New York: Academic Press, 2003.[3] Dodd R K, Eilbeck J C, Gibbon J D, Morris H C. Solitons and Nonlinear Wave Equations. New York: Academic Press, 1982.[4] Hasegawa A. Optical Solitons in Fibers. Berlin: Springer-Verlag, 1989.[5] Pitaevskii L, Stringari S. Bose-Einstein Condensation. England: Oxford, 2003.[6] Li H M. Exact self-similar solitary waves and collisions in nonlinear optical media[J]. Chin. Phys. B, 2008, 17(3): 759-763.[7] Huang G X. Second harmonic generation of propagating collective excitations in Bose-Einstein condensates[J]. Chin. Phys. B, 2004, 13(11): 1866-1876.[8] Lv Z Q, Zhang L M, Wang Y Sh. A conservative Fourier pseudospectral algorithm for the nonlinear Schr\"{o}ding equation[J]. Chin. Phys. B, 2014, 23(12): 120203.[9] Jiang Ch L, Sun J Q. A high order energy preserving scheme for the strongly coupled nonlinear Schr\"{o}ding system[J]. Chin. Phys. B, 2014, 23(5): 050202.[10] Yin J L, Zhao L W, Tian L X. Chaos control in the nonlinear Schr\"{o}ding equation with Kerr law nonlinearity[J]. Chin. Phys. B, 2014, 23(2): 020204.[11] Bluman G W, Cole J D. Similarity Methods for Differential Equations. Berlin: Springer, 1974.[12] Olver P J, Rosenau P. The construction of special solutions to partial differential equations[J]. Phys. Lett. A, 1986, 114(3): 107-112.[13] Wang J, Li B. Symmetry and general symmetry groups of the coupled Kadomtsev--Petviashvili equation[J]. Chin. Phys. B, 2009, 18(6): 02109.[14] Yao R X, J X Y, Lou S Y. Infinite series symmetry reduction solutions to the modified KdV--Burgers equation[J]. Chin. Phys. B, 2009, 18(5): 01821.[15] Jia M. Lie point symmetry algebras and finite transformation groups of the general Broer--Kaup system[J]. Chin. Phys. B, 2007, 16(6): 1534-1544.[16] Ma H C, Lou S Y. Finite symmetry transformation groups and exact solutions of Lax integrable systems[J]. Chin. Phys. B, 2005, 14(8): 1495-1500.[17] Li J H, Lou S Y. Kac--Moody--Virasoro symmetry algebra of a (2+1)-dimensional bilinear system[J]. Chin. Phys. B, 2008, 17(3): 747-753.[18] Lian Z J, Cheng L L, Lou S Y. Painlevé property, symmetries and symmetry reductions of the coupled Burgers system[J]. Chin. Phys. B, 2005, 14(8): 1486-1494.[19] Gagnon L, Wtntemitz P. Symmetry classes of variable coefficient nonlinear Schrodinger equations[J]. J. Phys. A: Math. Gen., 1993, 26(23): 7061.[20] Mansfield E L, Reid G J, Clarkson P A. Nonclassical reductions of a 3+1-cubic nonlinear Schr\"{o}ding system[J]. Comput. Phys. Commun., 1998, 115(2-3): 460-488.[21] Li B, Li Y Q, Chen Y. Finite Symmetry Transformation Groups and Some Exact Solutions to (2+1)-Dimensional Cubic Nonlinear Schr\"{o}ding Equation[J]. Commun. Theor. Phys., 2009, 51(5):773-776.[22] Wang J, Li B, Ye W C. Approximate solution for the Klein-Gordon-Schr\"{o}ding equation by the homotopy analysis method[J]. Chin. Phys. B, 2010, 19(3): 030401.[23] Wang H, Li B. Solitons for a generalized variable-coefficient nonlinear Schr\"{o}ding equation[J]. Chin. Phys. B, 2011, 20(4): 040203.[24] Hu X, Li B. Exact analytical solutions of three-dimensional Gross-Pitaevskii equation with time-space modulation[J]. Chin. Phys. B, 2011, 20(5): 050315.[25] Li B, Zhang X F, Li Y Q, Chen Y, Liu W M. Solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic and complex potential[J]. Phys. Rev. A, 2008, 78(2): 023608.[26] Jing J C, Li B. Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schr\"{o}ding equation with variable coefficients[J]. Chin. Phys. B, 2013, 22(1): 010303.[27] Camassa R, Hyman J M, Luce B P. Nonlinear Phenomena[J]. Physica D, 1998, 123(1-4): vii-viii.[28] Fushchych W, Nikitin A. Symmetry of Equations of Quantum Mechanics. New York : Allerton Press, 1994.[29] Boyer C.P. The maximal 'kinematical' invariance group for an arbitrary potential[J]. Helv. Phys. Acta, 1974, 47(5): 589-605.[30] Truax D R. Symmetry of time-dependent Schr\"{o}ding equations. I. A classification of time-dependent potentials by their maximal kinematical algebras[J]. J. Math. Phys., 1981, 22: 1959.[31] Ruan H Y, Chen Y X. The Study of Exact Solutions to the Nonlinear Schr\"{o}ding Equations in Optical Fiber[J]. J. Phys. Soc. Japan, 2003, 72(6): 1350-1355.[32] Ruan H Y, Chen Y X. Exact solutions of space-time dependent non-linear Schr\"{o}ding equations[J]. Math. Methods Appl. Sci., 2004, 27(9): 1077-1087.[33] Ruan H Y, Chen Y X, Lou S Y. General Symmetry Approach to Solve Variable-Coefficient Nonlinear Equation[J]. Commun. Theor.Phys., 2001, 35(6):641-646.[34] Ruan H Y, Li H J, Chen Y X. The application of the extending symmetry group approach in optical soliton communication[J]. J. Phys. A: Math. Gen., 2005, 38: 3995-4008.[35] Li Z F, Ruan H Y. The extended symmetry approach for studying the general Korteweg-de Vries-type equation[J]. Chin. Phys. B, 2010, 19(4): 040201. |