[1] H. Liu, J. Li, L. Liu, Lie group classifications and exact solutions for two variable-coefficientequations, Applied Mathematics and Computation, 215 (2009), 2927-2935.[2] C. Gardner et al, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19(1967), 1095-1097.[3] Y. Li, Soliton and integrable systems, Advanced Series in Nonlinear Science, Shanghai Scientificand Technological Education Publishing House, Shanghai, 1999 (in Chinese).[4] R. Liu, Compatibility method application in the evolution equation with variable coefficients,Journal of Hebei Normal University, Natural science edition, Hebei, 2011 (in Chinese).[5] R. Hirota, J. Satsuma, A variety of nonlinear network equations generated from the B¨acklundtransformation for the Tota lattice, Suppl. Prog. Theor. Phys., 59 (1976), 64-100.[6] H. Liu, et al., Exact periodic wave solutions for the hKdV equation, Nonlinear Anal., (2008).[7] P. Clarkson, M. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys.,30 (1989), 2201-2213.[8] P. Clarkson, New similarity reductions for the modified Boussinesq equation, J. Phys. A: Gen.,22 (1989), 2355-2367.[9] P. Olver, Applications of Lie Groups to Differential Equations, Grauate Texts in Mathematics,107 (1993).[10] G. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, (1989).[11] B. Cantwell, Introduction to Symmetry Analysis, Cambridge University Press, (2002).[12] H. Liu, et al., Lie symmetry analysis and exact explicit solutions for general Burgers’ equation,J. Comput. Appl. Math., (2008).[13] M. Craddock, E. Platen, Symmety group methods for fundamental solutions, J. DifferentialEquations, 207 (2004), 285-302.[14] M. Craddock, K. Lennox, Lie group symmetries as integral transforms of fundamental solutions,J. Differential Equations, 232 (2007), 652-674.[15] S. Watanabe, M. Miyakawa, M. Tada, J. Phys. Soc. Jpn., 45 (1978), 2030.[16] N. Saitoh, S. Watanabe, J. Phys. Soc. Jpn., 50 (1981), 1774.[17] K. Muroya, S. Watanabe, J. Phys. Soc. Jpn., 50 (1981), 3159.[18] S. Watanabe, M. Tada, J. Phys. Soc. Jpn., 50 (1981), 3443.[19] K. Muroya, N. Saitoh, S. Watanabe, J. Phys. Soc. Jpn., 51 (1982), 1024.[20] F. Kako, M. Miyakawa, S. Watanabe, J. Phys. Soc. Jpn., 55 (1986), 2919.[21] M. Matsukawa, S. Watanabe, H. Tanaca, J. Phys. Soc. Jpn., 58 (1989), 3081.[22] S. Ishiwata, S. Watanabe, H. Tanaca, J. Phys. Soc. Jpn., 59 (1990), 1163.[23] Y. Okada, S. Watanabe, H. Tanaca, J. Phys. Soc. Jpn. 59 (1990), 2647.[24] K. Kawamura, S. Watanabe, J. Phys. Soc. Jpn. 60 (1991), 82.[25] Taogetusang, L. YI, New infinite sequence soliton-like solutions of nonlinear LC circuit equations,Journal of Inner Mongolia University, Natural science edition, Inner Mongolia, 46 (2015), 33-42(in Chinese).[26] Taogetusang, L. YI, Many new solutions of nonlinear LC circuit equation, Chinese Journal ofQuantum Electronics, 32 (2015), 30-39 (in Chinese).[27] H. Liu, et al., Lie symmetry analysis and exact solutions for the short pulse equation, NonlinearAnalysis, 71 (2009), 2126-2133.[28] H. Liu, F. Qiu, Analytic solutions of an iterative equation with first order derivative, Ann.Differential Equations, 21 (2005), 337-342.[29] H. Liu, W. Li, Discussion on the analytic solutions of the second-order iterative differentialequation, Bull. Korean Math. Soc., 43 (2006), 791-804.[30] H. Liu, W. Li, The exact analytic solutions of a nonlinear differential iterative equation, NonlinearAnal, 69 (2008), 2466-2478.[31] N. Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems,China Machine Press, 2005.[32] Y. Shang, Y. Huang, Explicit and exact traveling wave solutions to the nonlinear LC circuitequation, Acta. Phys. Sin., 62 (2013), 1-9 (in Chinese). |