[1]Shor P W .Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J].Sci. Statist. Comput., 1997, 26(5):1484-1509
[2]Grover L K.Quantum Mechanics Helps in Searching for a Needle in a Haystack[J].Phys.Rev.Lett., 1997, 79(2): 325- 328
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters K W .Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[J].Phys.Rev. Lett., 1993, 70(13):1895-1899
[4] Bennett C H, Shor P W .Quantum Information Theory[J].IEEE Trans. Info. Theory, 1998, 44(6): 2724-2742
[5] Chuang I L, Yamamoto Y .Simple quantum computer[J].Phys. Rev. A, 1995, 52(5):3489-3496
[6] Veis L, Visnak J, Fleig T, Knecht S, Saue T, Visscher L, Pittner J .Relativistic quantum chemistry on quantum computers[J].Phys. Rev. A, 2012, 85(3):030304-1-030304-5
[7] Lidar D A, Chuang I L, Whaley K B 1998 Phys.Decoherence-Free Subspaces for Quantum Computation[J].Phys. Rev. Lett., 1998, 81(12): 2594-2597
[8]Shor P W.Scheme for reducing decoherence in quantum computer memory[J].PhysRev.A, 1995 , 52(4):R2493-R2496
[9] Steane A M .Error Correcting Codes in Quantum Theory[J].Phys. Rev.Lett., 1996, 77(5): 793-797
[10] Knill E, Laflamme R .Theory of quantum error-correcting codes[J].Phys.Rev.A, 1997, 55 (2):900-911
[11] Calderbank A R, Rains E M, Shor P W, Sloane N J A.Quantum Error Correction and Orthogonal Geometry[J].Phys. Rev.Lett., 1997 , 78 (3):405-408
[12]Zhou Zheng-Wei, Yu Bo, Zhou Xing Xiang, Feldman M J, and Guo Guang-Can.Scalable Fault-Tolerant Quantum Computation in Decoherence-Free Subspaces[J].Phys. Rev.Lett., 2004, 93 (1):010501-1-010501-4
[13] Brion E, Pedersen L H, M?lmer K, Chutia S, Saffman M 2007.Universal quantum computation in a neutral-atom decoherence-free subspace[J].Phys.Rev.A, 2007, 75 (3):032328-1-032328-7
[14] Viola L, Knill E, Lloyd S .Dynamical Decoupling of Open Quantum Systems[J].Phys. Rev. Lett., 1999, 82(12): 2417-2421
[15] Zhu S L, Wang Z D.Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases[J].Phys. Rev. Lett., 2002, 89(9):097902-1-097902-4
[16] Zanardi P, Rasetti M .Noiseless Quantum Codes [J].Phys.Rev.Lett., 1997, 79(17):3306-3309
[17]Duan Lu-Ming, Guo Guang-Can. Preserving Coherence in Quantum Computation by Pairing Quantum Bits[J].Phys. Rev. Lett., 1997, 79 (10):1953-1956
[18]Wu Chunfeng, Feng Xun-Li, Yi X X, Chen I M, Oh C H.Quantum gate operations in the decoherence-free subspace of superconducting quantum-interference devices [J].Phys. Rev. A, 2008, 78(6):062321-1-062321-4
[19]Ivanov P A, Poschinger U G, Singer K, Kaler F S.Quantum gate in the decoherence-free subspace of trapped-ion qubits [J].Europhys. Lett., 2010, 92(3):30006-1-30006-6
[20] Chen Yue-Yue, Feng Xun- Li, Oh C H .Geometric entangling gates for coupled cavity system in decoherence-free subspaces[J].Optics Communications, 2012 , 285 (24):5554-5557
[21]Chen Yue-Yue, Feng Xun-Li, Oh C H.Quantum computation in the decoherence-free subspaces with cavity QED [J].Quantum Inf. Process., 2014, 13(2):547-557
[22] Zhang Zu-Rong, Li Chun-Yan, Wu Chun-Wang, et al. Universal quantum computation in a decoherence-free subspace for the σx-type collective noise with superconducting charge qubits [J].Phys.Rev.A, 2012, 86 (4):042320-1-042320-7
[23] Lidar D A, Bacon D, Kempe J, Whaley K B.Decoherence-free subspaces for multiple-qubit errors. I. Characterization [J].Phys. Rev.A, 2001, 63 (2): 022306-1- 022306-12
[24]James D F V.Quantum Computation with Hot and Cold Ions: An Assessment of Proposed Schemes[J].Fortschritte der Physik, 2000, 48 (9-11):823-837
[25]Zheng Shi-Biao, Guo Guang-Can.Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED[J].Phys. Rev. Lett., 2000, 85 (11): 2392-2395 |