J4 ›› 2016, Vol. 33 ›› Issue (5): 584-589.

• 非线性光学 • 上一篇    下一篇

强非局域非线性介质中1+1维厄米高斯损耗光孤子

白东峰,卢宏炎   

  1. 河南工业职业技术学院 机电工程学院,河南 南阳 473009
  • 收稿日期:2015-09-21 修回日期:2016-03-11 出版日期:2016-09-28 发布日期:2016-09-28
  • 通讯作者: 白东峰(1980-- ),研究生,讲师,主要研究方向为光电技术。 E-mail:342807543@qq.com
  • 基金资助:
    河南省基础与前沿技术研究项目资助(122300410416)

(1+1)D Hermite Gauss lossy solitons in strongly nonlocal nonlinear media

Bai Dongfeng,Lu Hongyan   

  1. Institute of mechanical and electrical automation, Henan Polytechnic Institute, Nanyang 473009, China
  • Received:2015-09-21 Revised:2016-03-11 Published:2016-09-28 Online:2016-09-28

摘要: 用变分法研究了强非局域非线性损耗介质中1+1维厄米高斯光束的传输特性,得到了损耗光束参量在介质中传输所遵循的规律及其形成损耗光孤子所需要的临界功率.当初始功率接近临界功率时,光束的束宽按准正弦或准余弦规律作准周期展宽变化.通过比较,利用变分法所得到的解析解与数值解在光束传输一段较长的距离内都符合的比较好.

关键词: 非线性光学;变分法;厄米高斯光束;损耗孤子

Abstract: The propagation properties of (1+1)D Hermite--Gauss beam in nonlocal nonlinear lossy media are investigated by using variational methods. The laws of beam parameters followed when propagating in medium and the critical power required by forming the lossy solitons are obtained. When the initial power is close to the critical power, the beam width expands periodically and obeys the quasi-sine or quasi-cosine law. By comparison, the analytical solutions and numerical solutions using the variational solution method are in good agreement with a longer distance in beam propagation.

Key words: nonlinear optics; variational method; Hermite-Gaussian beams; lossy solitons