J4 ›› 2016, Vol. 33 ›› Issue (5): 618-627.

• 光通信 • 上一篇    下一篇

基于蚁群优化的高性能拥塞控制路由机制

洪文圳 李冬睿 沈阳   

  1. 1华南理工大学 软件学院, 广东 广州 510641 2华南理工大学 电子与信息学院 广州 510640
  • 收稿日期:2015-04-22 修回日期:2016-03-31 出版日期:2016-09-28 发布日期:2016-09-28
  • 通讯作者: 洪文圳(1981-)广东潮州人,硕士,实验师,主要研究方向为光网络优化、智能信息处理。

High Performance Congestion Control Routing Mechanism Based On Ant Colony Optimization

Hong Wen-zhen, Li Dong-rui, Shen Yang   

  1. 1School of Software Engineering, South China University of Technology, Guangzhou 510641,China 2School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2015-04-22 Revised:2016-03-31 Published:2016-09-28 Online:2016-09-28

摘要: 为了有效地解决偏远地理区域通信网络存在的网络拥塞严重、数据成功传输率低、数据冗余率高以及网络整体性能不佳等问题,通过考虑网络节点运动区域性特点,基于蚁群优化机制,设计出一种新型的容延容断网络 (DTN) 拥塞控制路由优化算法。该算法结合蚁群优化机制中的信息素因子,在同一对源、目的网络节点之间进行多次数据信息传输操作。在数据信息传输方向上,获取各个网络节点的中转跳数平均值,评估各个网络节点的中转价值;参考蚁群优化机制中的启发值因子,将网络节点的中转价值与剩余存储容量相关联,构成网络节点作为中转节点的评定参数,选取评定参数最大的网络节点完成其中转任务。实验表明:该算法有效控制了网络拥塞,提高了数据成功传输率,降低了数据信息冗余率,使网络整体性能得到进一步优化。

关键词: 光通信; 蚁群优化; 网络拥塞控制; 路由; DTN

Abstract: In order to effectively solve serious network congestion, low data success transmission rate, high data redundancy rate and poor overall network performance in remote geographical area communications network, a new delay/disruption tolerant network (DTN) congestion control routing optimization algorithm is designed based on ant colony optimization mechanism considering the feature of sport regional about network node. Combined the algorithm with pheromone of ant colony optimization mechanism, multiple data transmission between the source and destination nodes is carried out. In the data information transmission direction, average transit hops of network nodes are obtained, and the transit values of network nodes are assessed. Inspired values of ant colony optimization mechanism are referenced. Inspired values of network nodes and the remaining storage capacity of network nodes are associated. Network nodes are combined as evaluation parameters of transit nodes, and the transmission task is completed by selecting network nodes with the largest evaluation parameters. Experiments show that the network congestion is effectively controlled by the algorithm, data success transmission rate is improved, and data redundancy rate is also reduced effectively. The overall network performances are further optimized.

Key words: Optical communication; Ant colony optimization mechanism; Network congestion control; routing; DTN