[1] Li Zhibin. Traveling Wave Solution of Nonlinear Mathematical and Physical Equations(非线性数学物理方法的行波解) [M]. Beijing: Science Press, 2007(in Chinese). [2] Gu C H,Hu H S,Zhou Z X. Darboux Transformation in Soliton Theory and its Geometric Applications(孤立子理论中的Darboux变换及其几何应用)[M].Shanghai:Scientific and Technical Press,1999(in Chinese). [3] Hirota A R. Exact solution of the KdV equation for multiple collisions of solitions[J]. Phys. Rev,Lett,1971,27:1192-1194. [4] Steeb W H, Euler N. Nonlinear evolution equations and Painlevé test[J]. World Scientific Publishing Company, Singapore,1988. [5] Ablowitz M J,Clarkson P A. Soliton ,Nonlinear Evolution Equations and Inverse Scattering [M]. Cambridge Univ.Press,1991:123-136. [6] Sirendaoerji.Auxiliary equation method and solitary wave solutions to nonlinear evolution equations[J].Journal of Inner Mongolia Normal University(Natural Science Edition)(内蒙古师范大学学报(自然科学报)),2003,35(2):127-131(in Chinese). [7] Parkes EJ,Duffy BR. An automated tanh-function for finding solitary wave solutions to non-linear evolution equations[J].Comput Phys Commun ,1996,98:288-300. [8] Liu S K, Fu Z T, Liu S D.Expansion method about the jacobi elliptic function andits applications to nonlinear wave equationsjacobi[J]. Acta.Phys.Sin(物理学报),2001,50(11): 2068-2073(in Chinese). [9] Wang M L,Zhang J L,Li X Z. The -expansion method and traveling wave solutions of nonlinear evolution equation in mathematical physics[J].Phys. Lett. A ,2008,372(4): 417-423. [10] Abdelrahman, M.A.E, Zahran, E.H.M. and Khater, M.M.A. Exact Traveling Wave Solutions for Power Law and Kerr Law Non Linearity Using the Exp( ) -Expansion Method[J]. Global Journal of Science Frontier Research,2014,14:52-60. [11] Maha S.M.Shehata. The Exp( ) Method and Its Applications for Solving Some Nonlinear Evolution Equations in Mathematical Physics[J].American Journal of Computational Mathematics, 2015,5: 468-480. [12] Gao Q M, Yu X, Gao Y T,et al. Painlevé analysis, Lax pair, B?cklund transformation and multi-soliton solutions for a generalized variable-coef?cient KdV–mKdV equation in ?uids and plasmas[J], Phys.Scr, 2012,85:1-12. [13] Ma S H,Ren Q B,Fang J P,et al. Special soliton structures and the phenomena of fission and annihilation of solitons for the (2 +1)-dimensional Broer-Kaup system with variable coefficients[J]. Acta.Phys.Sin(物理学报), 2007, 56(12): 6777-6783(in Chinese). [14] Hong B J,Lu D C. New soliton-like solutions to the (2 +1)-dimensional Broer-Kaup equation with variable coefficients[J].Journal of Atomic and Molecular Physics(分子与原子物理学报),2008, 25(1): 130-134(in Chinese). [15] Taogetusang,Sirendaoerji. New solutions of the combined KdV equation with the variable coefficients[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(2):148-154(in Chinese).
|