J4 ›› 2017, Vol. 34 ›› Issue (1): 23-31.

• 图像与信息处理 • 上一篇    下一篇

基于LBP和深度学习的手写签名识别算法

马小晴, 桑庆兵   

  1. 江南大学物联网工程学院,江苏 无锡 214122
  • 收稿日期:2016-01-15 修回日期:2016-03-01 出版日期:2017-01-28 发布日期:2017-01-28
  • 通讯作者: 桑庆兵(1973-),安徽明光人,博士,副教授,主要研究方向为图像视频质量评价。 E-mail:439860266@qq.com
  • 作者简介:Supported by National Natural Science Foundation of China(国家自然科学基金,61170120), Prospective Research Project of Jiangsu Province(江苏省产学研前瞻性联合研究项目,BY2013015-41), Fundamental Research Funds for the Central Universities(江南大学自主科研计划重点项目,JUSRP51410B)

Handwritten signature verification algorithm based on LBP and deep learning

MA Xiaoqing, SANG Qingbing   

  1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
  • Received:2016-01-15 Revised:2016-03-01 Published:2017-01-28 Online:2017-01-28
  • About author:马小晴(1989-),女,河北辛集人,研究生,研究方向为手写签名识别。Email:xiaoqingxjzx@126.com;

摘要: 为优化手写签名识别算法性能,提出了一种局部二值模式( LBP)和深度学习相结合的手写签名识别算法。针对签名图像进行预处理、维纳滤波去除噪声;将预处理签名图像分为3×4子块,LBP应用于分块后的每个子图像,并将每个子块的纹理直方图特征连接起来,形成全局直方图特征;将得到的特征向量作为深度信念网络(DBN)的输入,逐层训练网络,并在顶层形成分类面,对签名图片进行识别。在GPDS、MCYT、及原创数据库进行实验,识别率误差分别为5.85%、9.3%、1.17%,有效提高了手写签名的识别精度,符合实际应用的要求。

关键词: 图像处理;手写签名识别;深度学习;深度信念网络;局部二值模式

Abstract: In order to improve the performance of handwritten signature verification algorithm, a handwritten signature verification algorithm based on local binary pattern (LBP) feature and deep learning is presented. Aiming at signature image, preprocessing and Wiener filtering are used to get rid of noise. The preprocessed signature image was divided into 3×4 blocks and LBP is used to each sub-block. The texture histogram characteristics of each sub-block are connected to form a global histogram characteristics. The feature vectors obtained are used as inputs of deep belief network (DBN) , DBN is trained layer by layer, and the classification plane is formed at the top to recognize the signature image. Experiments are conducted on GPDS,MCYT and the original database, and the recognition error rates are 5.85%, 9.3% and 1.17%, respectivly. The handwritten signature recognition accuracy is effectively improved, which meets the requirements of practical application.

Key words: image processing; handwritten signature verification; deep learning; deep belief network ; local binary pattern