J4 ›› 2017, Vol. 34 ›› Issue (2): 231-240.

• 光通信 • 上一篇    下一篇

薛定谔方程中包络孤子运动及相互作用的辛算法模拟

赖联有   

  1. 集美大学
  • 收稿日期:2016-02-29 修回日期:2016-08-27 出版日期:2017-03-28 发布日期:2017-04-06
  • 通讯作者: 赖联有

Simulating the motion and interaction of envelope solitons in Schr?dinger equation by symplectic algorithm

  • Received:2016-02-29 Revised:2016-08-27 Published:2017-03-28 Online:2017-04-06

摘要: 给出了Schr?dinger方程中高斯包络孤子的表达式,并对该表达式进行了证明。针对该高斯包络孤子的特点,进一步提出Schr?dinger方程中存在高斯包络孤子相互作用的情况。针对Schr?dinger方程的特点,提出Schr?dinger方程的辛算法。首先,通过波函数实部和虚部分离的方法把Schr?dinger方程变换成标准的哈密顿正则方程组。然后,通过对正则方程进行欧拉中心差分离散实现辛算法。给出了辛算法的守恒量,并证明了辛算法的稳定性。对Schr?dinger方程中的高斯包络孤子运动及多孤子相互作用过程进行了数值仿真实验,实验结果证明了所提观点的正确性及辛算法的有效性。

关键词: 光通信, 孤子, 辛算法, 薛定谔方程, optical communication, soliton, symplectic algorithm, Schr?dinger equation

Abstract: The expression of Gaussian envelope soliton in Schr?dinger equations are given and proved in this paper. According to the characteristics of the Gauss envelope soliton, further proposed that the interaction between Gaussian envelope solitons exists in Schr?dinger equation. The symplectic algorithm for solving Schr?dinger equation is proposed after analysis characteristics of Schr?dinger equation. First, the Schr?dinger equation is transformed into the standard Hamiltonian canonical equation by separating the real and imaginary parts of wave function. Secondly, the symplectic algorithm is implemented by using the Euler center difference method for the canonical equation. The conserved quantity of symplectic algorithm is given, and the stability of symplectic algorithm is proved. The numerical simulation experiment was carried out on Schr?dinger equation in Gauss envelope soliton motion and multi solitons interaction. The experimental results show that the proposed method is correct and the symplectic algorithm is effective.