量子电子学报

• 量子物理 • 上一篇    下一篇

BO方程的同宿呼吸波和有理波及其扰动动力学行为

宋莉莉 ,蒲志林1,鲜大权2   

  1. 1四川师范大学数学与软件科学学院,四川 成都 610101; 2西南科技大学理学院,四川 绵阳 621010
  • 出版日期:2017-09-28 发布日期:2019-06-13
  • 通讯作者: 蒲志林(1963-),男,四川万源,博士,教授,研究无穷维动力系统, E-mail:puzhilin908@sina.com
  • 作者简介:宋莉莉(1986-),女,四川泸州,研究生,研究非线性偏微分方程精确解和动力系统,E-mail: songlili29@163.com
  • 基金资助:
    国家自然科学基金(No.11204250和No.11202175)资助项目

Homoclinic breather wave and rational wave of BO equation and its perturbation dynamics behavior

SONG Lili1, PU Zhilin1, XIAN Daquan2   

  1. 1 School of Mathematics and Software Science, Sichuan Normal University, Chengdu 610101, China; 2 School of Science, Southwest University of Science and Technology, Mianyang 621010, China
  • Published:2017-09-28 Online:2019-06-13

摘要: 针对(1+1)维Benjamin-Ono(BO)方程,应用初值扰动双线性变换,结合同宿测试法获得了新的初值扰动周期呼吸波解和扭结呼吸波解;结合二次函数拟设法获得了初值扰动有理波解及其动力学分叉点。直观展示了一些动力学局域扰动结构。结果表明了该方程动力学行为对初值的敏感性。

关键词: 非线性方程, Benjamin-Ono方程, 同宿呼吸波, 有理波, 动力学扰动

Abstract: A new family of periodic breather wave solutions and kink breather wave solutions of initial perturbation for the (1+1)-dimensional Benjamin-Ono(BO) equation are obtained by using the homoclinic test method with bilinear transformation of initial perturbation. Meanwhile, rational wave solutions of initial perturbation and bifurcation point of dynamics are also gained by applying quadratic function ansatz method. It shows directly some local perturbation structure of dynamics. Results show that the dynamical behavior of the equation is sensitive to initial value.

Key words: nonlinear equation, Benjamin- Ono equation, homoclinic breather wave, rational wave, dynamic perturbation