[1] Zhang R N,Zhou J,Chen X. Application prospect of optical fiber quantum key distribution technology in power grid [J]. Telecommunications for Electric Power System,2014,33(240). 张睿汭, 周静, 陈希. 光纤量子密钥分配技术在电网中的应用前景[J]. 电力系统通信, 2012, 33(10): 1-4. [2] Liu D,Wang S,Zhou J. Application of quantum key in power network SSL VPN[J]. Power grid technology,2014,38(2):544-548.刘东, 王双, 周静. 量子密钥在电网SSL VPN 中的应用[J]. 电网技术, 2014, 38(2): 544-548. [3] Jiang Y H, Zhang S B, Chang Y, et al.Quantum key distribution protocol with two-way identity authentication[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2018, 35(1): 49-53. 江英华 张仕斌 昌燕 杨帆 杨敏. 具有双向身份认证的量子密钥分发协议[J]. 量子电子学报, 2018,35(1): 49-53 [4] Chen X F, Liu X F. Multiparty quantum key distribution with bi-directional authentication based on single particle state[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2017, 34(3): 369-373. 陈晓峰1,刘晓芬2. 基于单粒子态的具有双向认证的多方量子密钥分发[J]. 量子电子学报, 2017,34(3): 369-373 [5] Xiao L,Zhang Q,Lv L. Design and application of practical optical fiber quantum secure communication system [A]//Selected papers on the annual conference of power industry information in 2016[C]. 2016:345-348 肖磊, 张庆, 吕磊.实用化光纤量子保密通信系统的设计与应用[A]//2016电力行业信息化年会论文 集[C]. 2016:345-348. [6] Wu X. The application of quantum communication technology in power communication[J]. China Computer & Communication,2017(17): 169-171. 吴渲. 量子通信技术在电力通信方面的应用[J]. 信息与电脑,2017(17): 169-171. [7] Ye Z Y,Chen H Z,Wang W Q. Discussion on power application of quantum key distribution secret communication system[J]. Engineering construction and design,2016(07):238-239. 叶志远, 陈华智, 王文清. 量子密钥分发保密通信系统电力应用方向探讨[J]. 工程建设与设计, 2016(07): 238-239. [8] Yan X L, Jiang D N. Quantum communication technology and its application in power system[J]. Telecom World, 2015(21): 8-9. 严晓玲, 江东娜. 量子通信技术及其在电力系统中的应用分析[J]. 通讯世界, 2015(21): 8-9. [9] Liu J W, Zhao Z Y, Xu H M, et al. Application of Quantum Communication Technology in Confidential Transmission of Power Information System[A]//Selected papers on the annual conference of power industry information in 2016[C]. 2016:295-298. 刘俊文, 赵子岩, 徐慧明等. 量子通信技术在电力信息系统保密传输中的应用[A]//2016电力行业信 息化年会论文集[C]. 2016:295-298. [10] Sinha R K, Mishra M, Sahu S S. Quantum Key Distribution: Simulation of BB84 Protocol in C[J]. International Journal of Electrical, Electronics and Computer Systems, 2017(64): 57-60. [11] Kour J, Koul S, Zahid P. A Survey on Quantum Key Distribution Protocols[J]. International Journal of Computer Science and Applications, 2017(7): 19-27. [12] Lo H K, Curty M, Qi B. Measurement-Device-Independent Quantum Key Distribution[J]. Phys. Rev. Lett. 108, 130503(2012). [13] Xu F H. Measurement-device-independent quantum communication with an untrusted source. Phys.Rev.A 92, 012333(2015). [14] Mao Q P, Zhao S M,Wang L, et al. Measurement-device-independent quantum-key-distribution based on wavelength division multiplexing[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2017, 34(1): 46-53. 毛钱萍, 赵生妹, 王乐等. 基于波分复用技术的测量设备无关量子密钥分发[J]. 量子电子学报, 2017, 34(1): 46-53. [15] Wang L, Zhao S M, Gong L Y, et al. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum[J]. Chinese Physics B, 2015, 24(12): 120307. [16] Choi Y, Kwon O, Woo M. Plug-and-play measurement-device-independent quantum key distribution[J]. Phys. Rev. A 93, 032319(2016). [17] Tang G Z, Sun S H, Xu F H, et al. Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution[J]. Phys. Rev. A 94, 032326(2016). [18] Tang Y L, Yin H L, Chen S J, et al. Quantum Electron[C]. IEEE J. Sel. Top21, 6600407(2015). [19] Jouguet P, Kun S, and Diamanti E. PPreventing calibration attacks on the local oscillator in continuous-variable quantum key distribution[J]. hys. Rev. A 87, 062313 (2013). [20] Tamaki K, Lo H K, Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Phys Rev A, 2012, 85(4): 042307. [21] Z Zhang Z, Y Wang, HE Min H E, et al. Intercept-resent eavesdropping in polarization-drift quantum cryptography[J]. Chin J Quant Elect, 2016, 33(1): 44-50. [22] Zhou J,Lv L F,L Y Q. Research on the second protection security of power system based on quantum key technology. Power grid technology, 2014,38(6):1518-1522. 周静, 卢利锋, 雷煜卿.量子密钥技术提升电力系统二次防护安全性研究[J].电网技术, 2014, 38(6): 1518-1522. [23] Zhang Z Y, Wang Y B, He M, et al. Study on the influence of polarization drift on the intercept retransmission attack in the actual quantum security system based on B92 protocol[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(1): 44-50. 张志永 王衍波 何敏 王剑. 基于B92协议的实际量子保密系统中偏振漂移对截听重发攻击的影响研 究[J]. 量子电子学报, 2016,33(1): 44-50 [24] Chen R K, Bao W S, Wang Y, et al. Measurement-device-independent quantum cryptographic conferencing with an untrusted source[J]. Chinese Physics B, 2017, 26(1): 010302. [25] Zhu F, Zhang C H, Liu A P, et al. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J]. Phys lett A, 2016, 16(20): 1-6. [26] Wu C F, Du Y N, Wang J D, et al.Performance optimization analysis of measurement device independent quantum key distribution system with weak coherent light source[J]. Chinese Journal of Physics, 2016, 65(10): 100302-100302. 吴承峰, 杜亚男, 王金东, 等. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析[J].物 理学报, 2016, 65(10): 100302-100302. [27] Er P K, Er G K. Review of Role of SSL in Cyber Security[J]. International Journal of Advanced Research in Computer Science, 2017, 8(4). |