量子电子学报

• 量子光学 • 上一篇    下一篇

基于前瞻影响因素分析的量子电路综合算法

刘洋,程学云,管致锦*,谈莹莹,王艺臻   

  1. 南通大学计算机科学与技术学院,江苏 南通 226019
  • 出版日期:2019-01-28 发布日期:2019-01-17
  • 通讯作者: guan.zj@ntu.edu.cn
  • 作者简介:刘洋(1997-),男,江苏徐州,本科生,主要从事线性可逆逻辑综合方面研究。E-mail:345144117@qq.com
  • 基金资助:
    江苏省自然科学基金(Natural Science Foundation of Jiangsu Province, BK20151274)、江苏省高校自然科学研究面上项目(General Project of Natural Science Research of Jiangsu Higher School ,14KJB520033)、江苏省研究生科研与实践创新计划项目(Postgraduate Research & Practice Innovation Program of Jiangsu Province,KYCX17_1916)

A Synthesis Algorithm of Quantum Circuit based on Look-ahead Influencing Factors

Liu Yang, Cheng Xue-yun, Guan Zhi-jin*, Tan Ying-ying, Wang Yi-zhen   

  1. College of Computer Science and Technology, Nantong University, Nantong 226019, China
  • Published:2019-01-28 Online:2019-01-17

摘要: 为了解决量子电路在线性近邻化过程中电路综合与量子代价优化问题,本文提出了一种考虑前瞻影响因素的线性最近邻量子电路综合与优化算法。该算法对任意给定的非最近邻量子电路,通过分别度量不同方法下操作当前量子门的过程对其后量子门的最近邻量子代价造成的影响,降低相邻量子门近邻化过程所需的SWAP门数量,从而达到构建并优化线性最近邻量子电路的要求。采用具有代表性的Benchmark例题进行实验,并以具有代表性和可比性的文献结论作为比较对象,对线性最近邻电路逻辑综合算法的结果进行比较,结果表明,本文的优化算法在添加交换门增量上有较大改进,22例Benchmark例题正优化达到18例,占比81.82%,平均正优化率为18.32%,平均优化率为11.75%。

关键词: 量子电路, 线性最近邻, 前瞻算法, 可逆逻辑

Abstract: To resolve the problem of circuit synthesis and quantum cost optimization in linear nearest neighboring of quantum circuits, this paper proposed an algorithm that considers prospective influencing factors for synthesizing and optimizing the linear nearest neighbor quantum circuit. For any given non-nearest neighbor quantum circuit, the algorithm could separately measure the impact of operating the current quantum gate with different methods on the nearest neighbor cost of the subsequent quantum gate and reduce the number of SWAP gates required for the near-neighboring process of adjacent quantum gates, so as to facilitate constructing and optimizing the linear nearest neighbor quantum circuit. In this study, experiments were conducted with the typical Benchmark examples, and the results of the logic synthesis algorithms for linear nearest neighbor circuit were compared among the representative and comparable research findings. The results showed that the proposed optimization algorithm made a great improvement in adding the incremental SWAP gates. Specifically, among the 22 Benchmark examples, 18(81.82%) were positively optimized, with an average positive optimization rate of 18.32%, and an average optimization rate of 11.75%.

Key words: quantum circuit, linear nearest neighbor(LNN), look-ahead algorithm, reversible logic