量子电子学报 ›› 2019, Vol. 36 ›› Issue (4): 444-449.

• 量子光学 • 上一篇    下一篇

非线性效应对量子模分复用系统误码率的影响分析

黄超1,李云霞1,石磊1,蒙文2,杨汝1   

  1. 空军工程大学信息与导航学院,陕西 西安 710077
  • 收稿日期:2018-12-10 修回日期:2019-01-04 出版日期:2019-07-28 发布日期:2019-07-11
  • 通讯作者: 李云霞(1966-),女,内蒙古包头人,硕士,教授,硕士生导师,主要从事光纤通信和量子通信方面的研究。 E-mail:yunxial@sohu.com
  • 作者简介:黄 超(1995-),安徽马鞍山人,研究生,主要从事量子通信方面的研究。E-mail:huangchao812@163.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 61601497)

The Analysis of the Influence of Nonlinear Effect on the Quantum Bit Error Rate of a Quantum mode Division multiplexing system

HUANG Chao, LI Yunxia, SHI Lei, MENG Wen, YANG Ru   

  1. Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
  • Received:2018-12-10 Revised:2019-01-04 Published:2019-07-28 Online:2019-07-11

摘要: 在少模光纤中利用模分复用技术可实现经典信号和量子信号的共纤同传。为了分析量子信号在传输过程中因光纤非线性效应而受到经典光信号的影响,本文首先研究了非线性效应引起的串扰功率与光纤长度及经典光信号功率的关系,并构建了在非线性效应影响下的量子误码率模型。然后针对三模模分系统进行仿真分析,探讨了光纤长度和经典光信号功率对量子误码率的影响。仿真结果表明,当选用信号光波长1550nm,经典光信号功率为-10dBm时,量子安全通信距离可达到155.7km。

关键词: 光纤量子通信, 模分复用, 非线性效应, 少模光纤

Abstract: The classical signals and quantum signals simultaneous transmission sharing a same few-mode fiber can be realized by using mode division multiplexing. In order to study the quantum signal influenced by classical optical signals due to optical fiber nonlinear effects during transmission, this paper firstly studies the relationship between the crosstalk power caused by nonlinear effect, fiber length and the power of classical optical signals, and constructs the quantum bit error rate model under the influence of nonlinear effect. Then the simulation analysis is carried out for the three modes optical fiber system, the effects of fiber length and classical optical signal power on the quantum bit error rate are discussed. Simulation results show that when the signal wavelength is 1550nm and the power of the classical optical signal is -10dbm, the quantum communication distance can reach 155.7km.

Key words: optical fiber quantum communication, mode division multiplexing, nonlinear effect, few-mode fiber