量子电子学报

• 光谱 •    下一篇

不同尺寸硅纳米球复合二聚体的荧光增强

米 智1,2, 李 宁1,2*   

  1. 1太原理工大学物理与光电工程学院,山西 太原 030024; 2太原理工大学新型传感器与智能控制教育部/山西省重点实验室,山西 太原 030024
  • 出版日期:2019-09-28 发布日期:2019-09-18
  • 作者简介:米 智(1991-),山西大同人,研究生,主要从事微纳光子学方面的研究。E-mail:1982987116@qq.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 61307069, 61575138)

Hybrid dimer composed of silicon nanospheres of different sizes for fluorescence enhancement

MI Zhi1,2, LI Ning1,2*   

  1. 1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 2 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
  • Published:2019-09-28 Online:2019-09-18

摘要: 在微纳光学中,利用具有独特光学性质的微纳结构来实现荧光物质的发光增强是一种较为普遍的方法。为了提高量子点(QDs)的发光效率,提出了一种由两个尺寸不同的硅纳米球组成的二聚体结构。通过时域有限差分法(FDTD),从量子产率增强和荧光激发率增强方面研究了硅纳米球二聚体对荧光的增强作用。结果表明,尺寸不同的两个硅纳米球组成的二聚体可以较大地提高CdSe量子点的发光强度。当两个硅纳米球具有较小的直径以及较小的间隔时,量子点的量子产率和荧光激发率都可以得到更大的增强。特别地,当两个硅纳米球的直径都是100 nm,间隔为10 nm时,CdSe量子点的荧光强度可以得到大约209倍的增强。研究结果对高性能量子点光致发光器件的设计和开发有一定的指导意义。

关键词: 微纳光学, 硅二聚体, 时域有限差分法, 量子点, 荧光增强

Abstract: Micro-nano structure with unique optical properties are commonly used in micro-nano optics to achieve luminescence enhancement of fluorescent substance. In order to improve the luminous efficiency of quantum dots (QDs), a dimer structure composed of two silicon nanospheres of different sizes is proposed. By utilising the finite-difference time-domain (FDTD) method, the enhancement in the quantum yield and fluorescence excitation rate are investigated to illustrate the fluorescence enhancement effect of the silicon nanospheres dimer. Results show that the luminous intensity of CdSe QDs can be greatly enhanced by dimers composed of two silicon nanospheres of different sizes. When the two silicon nanospheres have smaller diameter and smaller gap, the quantum yield and fluorescence excitation rate of the QDs can be enhanced more. In particular, when the diameter of the two silicon nanospheres is 100 nm and the gap is 10 nm, the fluorescence intensity of the CdSe quantum dot can be enhanced by approximately a factor of 209. The research results are of certain guiding significance for the design and development of high-performance quantum dot photoluminescence devices.

Key words: micro-nano optics, silicon dimer, finite difference time domain method, quantum dot, fluorescence enhancement