[1] |
Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263.
|
[2] |
Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789.
|
[3] |
Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226.
|
[4] |
Urbonas D, Balčytis A, Vaškevičius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658.
|
[5] |
Cscelli E, Sozzi M, Poli F, et al. Twoard a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(4): 967-972.
|
[6] |
Lu Meihong, Lei Haiying, Wang Zhijun, et al. Flourescence spectra and Raman spectra of several synthetic food colors[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(1): 12-17 (in Chinese).
|
[7] |
Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202.
|
[8] |
Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.
|
[9] |
Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279.
|
[10] |
Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.
|
[11] |
Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382.
|
[12] |
Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115.
|
[13] |
Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410.
|
[14] |
Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424.
|
[15] |
Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151.
|
[16] |
Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218.
|
[17] |
Yan Xin, Liang Lanju, Zhang Yating, et al. Research progress of electromagnetic metasurface used for radar cross section reduction in microwave and terhertz wave[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(6): 1639-1644 (in Chinese).
|
[18] |
Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica(物理学报), 2015, 64(15): 158101 (in Chinese).
|
[19] |
Wang Bo, Zhang Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology(太赫兹科学与电子信息学报), 2015, 13(1): 1-12, 18 (in Chinese).
|
[20] |
Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214.
|
[21] |
Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12 (4): 2255.
|
[22] |
Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9 (3): 507.
|
[23] |
Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.
|
[24] |
Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.
|
[25] |
Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503.
|
[26] |
Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870.
|
[27] |
Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.
|
[28] |
Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.
|