量子电子学报 ›› 2020, Vol. 37 ›› Issue (4): 430-446.
薄勇1, 卞奇1, 彭钦军1, 许祖彦1, 魏凯2, 张雨东2, 冯麓3, 薛随建3
收稿日期:
2020-03-06
修回日期:
2020-03-20
出版日期:
2020-07-28
发布日期:
2020-07-21
作者简介:
薄勇( 1972 - ), 北京人,博士,研究员,主要从事固体激光及其频率变换技术方面的研究。E-mail: boyong@mail.ipc.ac.cn
基金资助:
BO Yong1, BIAN Qi1, PENG Qinjun1, XU Zuyan1, WEI Kai2, ZHANG Yudong2, FENG Lu3, XUE Suijian3
Received:
2020-03-06
Revised:
2020-03-20
Published:
2020-07-28
Online:
2020-07-21
摘要: 地基光学望远镜对天观测时, 大气湍流扰动引起星光波前畸变将导致其实际分辨率远低于物理极限, 这 是急需解决的科学技术问题。采用钠信标激光激发海拔80∼105 km 大气电离层中的钠原子可产生高亮度的钠导 引星, 可作为信标探测大气对光波的扰动, 再利用自适应光学技术进行校正, 能使望远镜克服大气扰动影响, 获得 近衍射极限的分辨率。介绍了钠信标激光的特性与国内外研究进展, 尤其是中国科学院理化技术研究所激光物理 与技术研究中心研制的钠D2 线双峰谱型匹配的微秒脉冲钠信标激光器及其在大型望远镜上的应用情况。
中图分类号:
薄勇, 卞奇, 彭钦军, 许祖彦, 魏凯, 张雨东, 冯麓, 薛随建. 钠信标激光技术进展[J]. 量子电子学报, 2020, 37(4): 430-446.
BO Yong, BIAN Qi, PENG Qinjun, XU Zuyan, WEI Kai, ZHANG Yudong, FENG Lu, XUE Suijian. Development of Sodium Beacon Laser[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 430-446.
[1] | Babcock HW. The possibility of compensating astronomical seeing [J]. Publications of the Astronomical Society of the Pacific, |
19 | 53, 65(386): 229-236. |
[2] | Hardy J W. Active optics: A new technology for the control of light [C]. Proceedings of the IEEE, 1978, 66 (6): 651-697. |
[3] | Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe [J]. Astronomy and Astrophysics, 1985, 152: L29-L31. |
[4] | Primmerman C A, Murphy D V, Page D A, et al. Compensation of atmospheric optical distortion using a synthetic beacon [J]. |
Nature, 1991, 353 (6340): 141-143. | |
[5] | Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser |
guide-star [J]. Nature, 1991, 353 (6340): 144-146. | |
[6] | Thompson L A, Gardner C S. Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in astronomy |
[J] | Nature, 1987, 328: 229-231. |
[7] | Humphreys R A, Primmerman C A, Bradley L C, et al. Atmospheric-turbulence measurements using a synthetic beacon in the |
mesospheric sodium layer [J]. Optics Letters, 1991, 16 (18): 1367-1369. | |
[8] | Dekany R, Velur V, Petrie H, et al. Laser guide star adaptive optics on the 5.1 meter telescope at Palomar observatory [C]. |
AMOS Technical conference Proceedings, 2005. | |
[9] | Bonaccini D, Allaert E, Araujo C, et al. The VLT laser guide star facility [C]. Proceedings of SPIE, 2003, 105: 381-392. |
[10] | MignantD L, Campbell R D, Bouchez A H, et al. LGS AO operations at the W. M. Keck Observatory [C]. Proceedings of |
SPIE, 2006, 6270: 6270C-1. | |
[11] | Ellerbroek B, Adkins S, Andersen D, et al. Progress towards developing the TMT adaptive optical systems and their components |
[C] | Proceedings of SPIE, 2008, 7015: 70150R/1-70150R/11. |
[12] | Bian Q, Bo Y, Zuo J W, et al. Investigation of return photons from sodium laser beacon excited by a 40-watt facility-class |
pulsed laser for adaptive optical telescope applications [J]. Scientific Reports, 2018, 8 (9222): 1-10. | |
[13] | Milonni P W, Fearn H, Telle J M, et al. Theory of continuous wave excitation of the sodium beacon [J]. Journal of the Optical |
Society of America A, 1999, 16 (10): 2555-2566. | |
[14] | Holzlohner R, Rochester S M, Calia D B, et al. Optimization of CW sodium laser guide star efficiency [J]. Astronomy and |
Astrophysics, 2009, 510 (4-6361): 1109-1115. | |
[15] | Fan T W, Zhou T H, Feng Y. Improving sodium laser guide star brightness by polarization switching [J]. Scientific Reports, |
20 | 16, 6 (1): 19859. |
[16] | Ge J, Jacobsen B P, Angel J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness |
[C] | Proceedings of SPIE, 1998, 3353: 242. |
[17] | Jennifer E R, Antonin H B, John A, et al. Facilitizing the palomar AO laser guide star system [C]. Proceedings of SPIE, 2008, |
70 | 15: 70152S-1. |
[18] | Jian G, Jacobsena B P, Angel J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness |
[C] | Proceedings of SPIE, 1998, 3353: 242. |
[19] | Wang L Q, OtarolaA, Ellerbroek B. Impact of sodium laser guide star fratricide on multi-conjugate adaptive optics systems [J]. |
Journal of the Optical Society of America A, 2010, 27 (11): A19. | |
[20] | Rochester S M, Otarola A, Boyer C, et al. Modeling of pulsed laser guide stars for the thirty meter telescope project [J]. Journal |
of the Optical Society of America B, 2012, 29 (8): 2176. | |
[21] | Rampy R, Gavel D, Rochester S M, et al. Toward optimization of pulsed sodium laser guide stars [J]. Journal of the Optical |
Society of America B, 2015, 32 (12): 2425-2434. | |
[22] | Avicola K, Brase J M, Morris J R, et al. Sodium laser guide star system at Lawrence Livermore National Laboratory: System |
description and experimental results [C]. Proceedings of SPIE, 1994, 2201: 326-341. | |
[23] | Max C E, Gavel D T, Olivier S S, et al. Issues in the design and optimization of adaptive optics and laser guide stars for the |
Keck telescopes [C]. Proceedings of SPIE, 1994, 2201: 189. | |
[24] | Friedman H W, Erbert G V, Kuklo T C, et al. Sodium beacon laser system for the Lick Observatory [C]. Proceedings of SPIE, |
19 | 95, 2534: 150. |
[25] | Quirrenbach A, Hackenberg W, Holstenberg H, et al. The sodium laser guide starsystem of ALFA [C]. Proceedings of SPIE, |
19 | 97, 3126: 35-43. |
[26] | Rabien S, Davies R I, Hackenberg W K P, et al. Beam quality and polarization analysis of the ALFA laser at Calar Alto and |
the influence on brightness and size of the laser guide star [C]. Proceedings of SPIE, 1999, 3762: 368. | |
[27] | Butler D J, Davies R I, Fews H, et al. Calar Alto ALFA and the sodium laser guide star in astronomy [C]. Proceedings of SPIE, |
19 | 99, 3762: 184. |
[28] | Davies R I, Ott T, Li J, et al. Operational issues for PARSEC, the VLT laser [C]. Proceedings of SPIE, 2003, 4839: 402. |
[29] | Bonaccini D, Allaert E, Araujo C, et al. The VLT laser guide star facility [C]. Proceedings of SPIE, 2003, 4839: 381-392. |
[30] | Rabien S, Davies R I, Ott T, et al. Test performance of the PARSEC laser system [C]. Proceedings of SPIE, 2004, 5490: 981. |
[31] | Pennington D M, Dawson JW, Drobshoff A, et al. Compact fiber laser for 589 nm laser guide stars generation [C]. Conference |
on Lasers and Eletro-Optics Europe, 2005. | |
[32] | Dawson J W, Drobshoff A D, Beach R J, et al. Multi-watt 589 nm fiber laser source [C]. Proceedings of SPIE, 2006, 6102: |
61 | 021F. |
[33] | Georgiev D, Gapontsev V P, Dronov A G , et al. Watts-level frequency doubling of a narrow line linearly polarized Raman |
fiber laser to 589 nm [J]. Optics Express, 2005, 13 (18): 6772. | |
[34] | Dupriez P, Farrell C, Ibsen M, et al. 1Waverage power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system |
[C] | Lasers & Applications in Science & Engineering, International Society for Optics and Photonics, 2006, 6102: 61021G-1. |
[35] | Olausson C B T, Shirakawa A, Maurayama H, et al. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources |
[C] | Proceedingsof SPIE, 2010, 7580 (6): 758013-1. |
[36] | Surin A A, Larin S V. 14 W SHG in MgO:sPPLT at 589 nm from high power CW linearly polarized RFL [C]. International |
Conference Laser Optics, 2014. | |
[37] | Taylor L, Feng Y, Calia D B. High power narrowband 589 nm frequency doubled fibre laser source [J]. Optics Express, 2009, |
17 | (17): 14687-14693. |
[38] | Feng Y, Taylor L R, Calia D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star [J]. Optics Express, 2009, |
17 | (21): 19021-19026. |
[39] | Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently |
combined narrow-band Raman fibre amplifiers [J]. Optics Express, 2010, 18 (8): 8540-8555. | |
[40] | Calia D B, Kaenders W. First light for ESO’s four laser guide star facility [J]. Optics and Photonics News, 2016, 27: 18. |
[41] | Zhang L, Jiang H, Cui S, et al. Over 50W589 nm single frequency laser by frequency doubling of single Raman fiber amplifier |
[C] | CLEO: Science and Innovations, 2014. |
[42] | Zhang L, Jiang H W, Cui S Z, et al. Versatile Raman fiber laser for sodium laser guide star [J]. Laser & Photonics Reviews, |
20 | 15, 8 (6): 889-895. |
[43] | Yang X Z, Zhang L, Cui S Z, et al. Sodium guide star laser pulsed at Larmor frequency [J]. Optics Letters, 2017, 42 (21): |
43 | 51-4354. |
[44] | Moosmuller H, Vance J D. Sum-frequency generation of continuous-wave sodium D2 resonance radiation [J]. Optics Letters, |
19 | 97, 22 (15): 1135-1137. |
[45] | Vance J D, She C Y, Moosmüller H. Continuous-wave, all-solid-state, single-frequency 400 mW source at 589 nm based on |
doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator [J]. Applied Optics, 1998, 37 (21): 4891-4896. | |
[46] | Bienfang J C, Denman C A, Grime B W, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency |
generation with injection-locked lasers [J]. Optics Letters, 2003, 28 (22): 2219. | |
[47] | Bienfang J C, Denman C A, Grime B W, et al. 20 watt CW all-solid-state 589 nm sodium beacon excitation source based on |
doubly resonant sum-frequency generation in LBO [C]. Proceedings of SPIE, 2004. | |
[48] | Denman C A, Hillman P D, Moore G T, et al. 20WCW 589 nm sodium beacon excitation source for adaptive optical telescope |
applications [J]. Optical Materials, 2004, 26 (4): 507-513. | |
[49] | Denman C A, Moore G T, Drummond J D, et al. 50 W CW single frequency 589 nm FASOR [C]. Proceedings of SPIE, 2005. |
[50] | Denman C A, Hillman P D, Moore G T, et al. Realization of a 50 watt facility-class sodium guidestar pump laser [C]. Solid |
State Lasers XIV: Technology and Devices, International Society for Optics and Photonics, 2005, 5707: 46. | |
[51] | Denman C A, Hillman P D, Moore G T. The starfire optical range sodium guidestar FASOR [C]. Proceedings of the 21st |
Annual Solid State and Diode Technology Review, 2008. | |
[52] | Saito N, Akagawa K, Hayano Y, et al. 589 nm generation by sum-frequency mixing of mode-locked 1064 nm and 1319 nm |
pulses in periodically poled KTP [C]. Conference on Lasers and Electro-Optics, 2004. | |
[53] | Hayano Y, Saito Y, Saito N, et al. Design of laser system for Subaru LGS AO [C]. Advancements in Adaptive Optics, International |
Society for Optics and Photonics, 2004. | |
[54] | Saito N, Akagawa K, Hayano Y, et al. Synchronization of 1064 and 1319 nm pulses emitted from actively mode-locked |
Nd:YAG lasers and its application to 589 nm sumfrequencygeneration [J]. Japanese Journal of Applied Physics, Part 2, 2005, | |
44 | : L1484-L1487. |
[55] | Saito N, Akagawa K, Hayano Y, et al. 1 W 589 nm coherent light-source achieved by quasi-intracavity sum-frequency generation |
[C] | Proceedings of SPIE, 2005, 98: 457-461. |
[56] | Saito Y, Hayano Y, Saito N, et al. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope [C]. Proceedings |
of SPIE, 2006. | |
[57] | Saito N, Akagawa K, Kato M, et al. Development of all-solid-state coherent 589 nm light source: Toward the realization of |
sodium lidar and laser guide star adaptive optics [C]. Proceedings of SPIE, 2006, 6409: 64091H-1. | |
[58] | Saito N, Akagawa K, Ito M, et al. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively |
mode-locked Nd:YAG lasers [J]. Optics Letters, 2007, 32(14): 1965. | |
[59] | Takami H, Colley S, Dinkins M, et al. Status of Subaru laser guide star AO system [C]. Proceedings of SPIE, 2006, 6272: |
62 | 720C1. |
[60] | Hankla A K, Bartholomew J, Groff K, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I |
and Gemini South Telescopes [C]. Proceedings of SPIE, 2006, 6272: 62721G1. | |
[61] | Lee I, Jalali M, Vanasse N, et al. 20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes |
[C] | Proceedings of SPIE, 2008, 7015: 70150N1. |
[62] | Sawruk N, Lee I, Jalali M, et al. System overview of 30 W and 55 W sodium guide star laser systems [C]. Proceedings of |
SPIE, 2010, 7736: 77361Y1. | |
[63] | d’Orgeville C, Diggs S, Fesquet V, et al. Gemini South multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky |
performance results [C]. Proceedings of SPIE, 2012, 8447: 84471Q-1. | |
[64] | Jeys T H. Development of amesospheric sodium laser beacon for atmospheric adaptive optics [J]. The Lincoln Laboratory |
Journal, 1991, 4 (2): 133-150. | |
[65] | Kibblewhite E J, Shi F, Bonaccini D, et al. Design and field tests of an 8 W sum-frequency laser for adaptive optics [C]. |
Proceedings of SPIE, 1998, 3353: 300-309. | |
[66] | Velur V, Kibblewhite E J, Dekany R G, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star |
test bed [C]. Proceedings of SPIE, 2004, 5490: 1033. | |
[67] | Roberts J E, Bouchez A H, Angione J, et al. Facilitizing the Palomar AO laser guide star system [C]. International Society for |
Optics and Photonics, 2008, 7015: 70152S-1. | |
[68] | Lu YF, Bo Y, Xie S Y, et al. An 8.1 W diode pumped solid-state quasi-continuous-wave yellow laser at 589 nm by intracavity |
sum-frequency mixing generation [J]. Optics Communications, 2008, 281: 5596. | |
[69] | Wang P Y, Xie S Y, Bo Y, et al. 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in |
LBO [J]. Chinese Physics B, 2014, 23(9): 094208. | |
[70] | Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope [C]. |
Proceedings of SPIE, 2013, 8447: 84471R-1. | |
[71] | Bian Q, Bo Y, Zuo J W, et al. High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression |
and D2b re-pumping [J]. Optics Letters, 2016, 41(8): 1732-1735. | |
[72] | Lu Y H, Fan G B, Ren H J, et al. High-average-power narrow-line-width sum frequency generation 589 nm laser [C]. Proceedings |
of SPIE, 2015, 9650: 965008-1. | |
[73] | Lu Y H, Zhang L, Xu X F, et al. Tunable-line-width all-solid-state double-spectral-line sodium beacon laser [C]. Proceedings |
of SPIE, 2017, 10436: 1043605. | |
[74] | Gerster E, Hahn C, Lorch S, et al. Frequency-doubled GaAsSb/GaAs semiconductor disk laser emitting at 589 nm [C]. Conference |
Proceedings Laser 82 Electro Optics, 2003. | |
[75] | Fallahi M, Fan L, Kaneda Y, et al. 5 W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity |
surface-emitting laser [J]. IEEE Photonics Technology Letters, 2008, 20 (20): 1700-1702. | |
[76] | Hessenius C, Lukowski M, Moloney J, et al. Tunable single-frequency yellow laser for sodium guidestar applications [C]. |
SPIE Newsroom, 2012. | |
[77] | Leinonen T, H¨ark¨onen A, Korpij¨arvi VM, et al. High-power narrow-linewidth optically pumped dilute nitride disk laser with |
emission at 589 nm [C]. Proceedings of SPIE, 2010, 7720 (2): 772016. | |
[78] | Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL [J]. Optics Express, 2014, 22 (6): 6372-6380. |
[1] | 闫智武, 顾乃庭, 饶长辉, . 大口径地基太阳望远镜温度传感器标定方法[J]. 量子电子学报, 2023, 40(4): 588-596. |
[2] | 黄健, ∗, 邓科, . 大气相干激光通信研究中的几个理论问题[J]. 量子电子学报, 2020, 37(5): 556-565. |
[3] | 黄家应, 朱磊, 杨峰, 饶长辉, ∗. 分布式全息孔径成像系统形位误差校正[J]. 量子电子学报, 2020, 37(4): 456-465. |
[4] | 赵旺, 赵孟孟, 王帅, 杨平, . 近地面相位涡旋对自适应光学校正的影响[J]. 量子电子学报, 2020, 37(4): 466-476. |
[5] | 李 南, 乔春红, 张鹏飞, 冯晓星†, 范承玉. 激光在非Kolmogorov湍流大气中传输及其相位补偿研究[J]. 量子电子学报, 2019, 36(6): 745-751. |
[6] | 李战国 李邦明 李常伟 张思炯. 一种基于Shack-Hartmann传感器的自适应波前重建算法[J]. J4, 2013, 30(4): 482-489. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||