量子电子学报 ›› 2020, Vol. 37 ›› Issue (5): 556-565.
黄健1,2∗, 邓科1,2
收稿日期:
2020-04-03
修回日期:
2020-04-09
出版日期:
2020-09-28
发布日期:
2020-09-28
作者简介:
黄健( 1981 - ), 贵州遵义人, 博士, 副教授, 硕士生导师, 主要从事激光大气传输方面的研究。E-mail: huangjian81@uestc.edu.cn
基金资助:
HUANG Jian1,2∗, DENG Ke1,2
Received:
2020-04-03
Revised:
2020-04-09
Published:
2020-09-28
Online:
2020-09-28
摘要: 大气相干激光通信技术在工程上已经发展到进入实用化部署阶段, 但是其理论发展仍不完善, 对大气相干 激光通信系统理论以及其中必须涉及的自适应光学技术和大气闪烁问题的研究进展进行了回顾和分析。针对大 气湍流对光束振幅扰动以及自适应光学相位校正的随机过程进行精确分析是当前大气相干激光通信理论体系化 的主要挑战, 且研究方法必须全面采用概率分析的方法。目前, 自适应光学相位校正的概率分析的基本框架已经 形成, 面向大气相干激光通信的闪烁概念必须扩展包含大气散斑和总功率起伏两种内涵, 这是未来研究的重点和 难点。
中图分类号:
黄健, ∗, 邓科, . 大气相干激光通信研究中的几个理论问题[J]. 量子电子学报, 2020, 37(5): 556-565.
HUANG Jian, ∗, DENG Ke, . Theoretical challenges in the research of atmospheric coherent laser communication[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 556-565.
[1] | Sodnik Z, Sans M. Extending EDRS to laser communication from space to ground [C]. Proceedings of International Conference |
on Space Optical Systems and Applications, 2012, 12: 9-14. | |
[2] | Zech H, Heine F, Tr¨ondle D, et al. LCT for EDRS: LEO to GEO optical communications at 1, 8 Gbps between Alphasat and |
Sentinel 1a [C]. Proceedings of SPIE, 2015, 9647: 96470J. | |
[3] | Seel S, K¨ampfner H, Heine F, et al. Space to ground bidirectional optical communication link at 5. 6 Gbps and EDRS connectivity |
outlook [C]. Proceedings of IEEE, 2011: 1-7. | |
[4] | Hauschildt H, Gallou N, Mezzasoma S, et al. Global quasi-real-time-services back to Europe: EDRS Global [C]. Proceedings |
of SPIE, 2019, 11180: 111800X. | |
[5] | Saucke K, Seiter C, Heine F, et al. The Tesat transportable adaptive optical ground station [C]. Proceedings of SPIE, 2016, |
97 | 39: 973906. |
[6] | Winick K. Atmospheric turbulence-induced signal fades on optical heterodyne communication links [J]. Applied Optics, 1986, |
25 | (11): 1817-1825. |
[7] | Liu C, Chen S Q, Li X Y, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications [J]. |
Optics Express, 2014, 22(13): 15554-15563. | |
[8] | Belmonte A, Kahn J. Performance of synchronous optical receivers using atmospheric compensation techniques [J]. Optics |
Express, 2008, 16(18): 14151-14162. | |
[9] | Zhu X M, Kahn J. Free-space optical communication through atmospheric turbulence channels [J]. IEEE Transactions on |
Communications, 2002, 50(8): 1293-1300. | |
[10] | Huang J, Mei H P, Deng K, et al. Signal to noise ratio of free space homodyne coherent optical communication after adaptive |
optics compensation [J]. Optics Communications, 2015, 356: 574-577. | |
[11] | Ma J, Ma L, Yang Q B, et al. Statistical model of the efficiency for spatial light coupling into a single-mode fiber in the |
presence of atmospheric turbulence [J]. Applied Optics, 2015, 54(31): 9287-9293. | |
[12] | Horwath J, David F, Knapek M, et al. Coherent transmission feasibility analysis [C]. Proceedings of SPIE, 2005, 5712: 13-23. |
[13] | Cao J T, Zhao X H, Liu W, et al. Performance analysis of a coherent free space optical communication system based on |
experiment [J]. Optics Express, 2017, 25(13): 15299-15312. | |
[14] | Liu C, Chen M, Chen S Q, et al. Adaptive optics for the free-space coherent optical communications [J]. Optics Communications, |
20 | 16, 361: 21-24. |
[15] | Huang J, Deng K, Liu C, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication |
[J] | Optics Express, 2014, 22(13): 16000-16007. |
[16] | Anbarasi K, Hemanth C, Sangeetha R. A review on channel models in free space optical communication systems [J]. Optics |
and Laser Technology, 2017, 97: 161-171. | |
[17] | Rao Ruizhong. Light Propagation in The Turbulent Atmosphere (光在湍流大气中的传播) [M]. Hefei: Anhui Science and |
Technology Press, 2005 (in Chinese). | |
[18] | Wang T, Strohbehn J. Log-normal paradox in atmospheric scintillations [J]. Journal of the Optical Society of America A, 1974, |
64 | (5): 583-591. |
[19] | Andrews L, Phillips R. Laser Beam Propagation Through Random Media [M]. Bellingham: SPIE Press, 2005. |
[20] | Huang J. Non-lognormal probability density function of scintillation in weak regime [C]. Optical Society of America, 2017: |
PW2D. 3. [21] Johns Hopkins Turbulence Database (JHTDB) [OL]. http://turbulence. pha. jhu. edu/. | |
[22] | Deep Turbulence MURI [OL]. https://sites. google. com/site/deepturbulencemuri/home. |
[23] | Huang J, Liu C, Deng K, et al. Probability of the residual wavefront variance of an adaptive optics system and its application |
[J] | Optics Express, 2016, 24(3): 2818-2829. |
[24] | Hardy J. Adaptive Optics for Astronomical Telescopes [M]. Oxford University Press, 1998. |
[25] | Tyson R. Principles of Adaptive Optics [M]. 3nd ed., CRC press, 2010. |
[26] | Berkefeld T, Soltau D, Czichy R, et al. Adaptive optics for satellite-to-ground laser communication at the 1 m telescope of the |
ESA Optical Ground Station, Tenerife, Spain [C]. Proceedings of SPIE, 2010, 7736: 77364C. | |
[27] | Tyson R, Canning D E. Bit-error rate improvement of a laser communication system with low-order adaptive optics [C]. |
Proceedings of SPIE, 2002, 4821: 82-87. | |
[28] | Roberts L, Page N, Burruss R S, et al. Conceptual design of the adaptive optics system for the laser communication relay |
demonstration ground station at Table Mountain [C]. Proceedings of SPIE, 2013, 8610: 86100N. | |
[29] | Wang S F, Wang X T, Zou X Y, et al. Experiment layout of space laser communication system based on adaptive optical |
system [J]. Advanced Materials Research, 2011, 287: 3020-3023. | |
[30] | Anzuola E, Belmonte A. Experimental analysis of adaptive optics compensation in free-space coherent laser communications |
[C] | Proceedings of SPIE, 2016, 9979: 99790M. |
[31] | Weyrauch T, Vorontsov M. Free-space laser communications with adaptive optics: Atmospheric compensation experiments |
[J] | Journal of Optical and Fiber Communications Reports, 2004, 1: 355-379. |
[32] | Schwartz N, V´edrenne N, Michau V, et al. Mitigation of atmospheric effects by adaptive optics for free-space optical communications |
[C] | Proceedings of SPIE, 2009, 7200: 72000J. |
[33] | Gladysz S, Christou J, Bradford L, et al. Temporal variability and statistics of the Strehl ratio in adaptive-optics images [J]. |
Publications of the Astronomical Society of the Pacific, 2008, 120(872): 1132. | |
[34] | Yaitskova N, Esselborn M, Gladysz S. Statistical moments of the Strehl ratio [C]. Proceedings of SPIE, 2012, 8447: 84475Y. |
[35] | Christou J, Mighell K, Makidon R. Strehl ratio and image sharpness for adaptive optics [C]. Proceedings of SPIE, 2006, 6272: |
62 | 721Y. |
[36] | Yura H, Fried D. Variance of the Strehl ratio of an adaptive optics system [J]. Journal of the Optical Society of America A, |
19 | 98, 15(8): 2107-2110. |
[37] | Huang J, Zhou H, Yang J S, et al. Temporal statistics of residual wavefront variance of an adaptive optics system [J]. Journal |
of Optics, 2019, 21(12): 125606. | |
[38] | Cao G R,Yu X. Accuracy analysis of a Hartmann-Shack wavefront sensor operated with a faint object [J]. Optical Engineering, |
19 | 94, 33(7): 2331-2336. |
[39] | Noll R. Zernike polynomials and atmospheric turbulence [J]. Journal of the Optical Society of America A, 1976, 66(3): 207- |
211. |
[1] | 闫智武, 顾乃庭, 饶长辉, . 大口径地基太阳望远镜温度传感器标定方法[J]. 量子电子学报, 2023, 40(4): 588-596. |
[2] | 李小军, 王迪, 龚静文. 光子辅助太赫兹通信技术研究进展[J]. 量子电子学报, 2023, 40(4): 423-435. |
[3] | 谭业腾, 蒲涛∗, 郑吉林, 周华, 苏国瑞. PSK 量子噪声随机加密系统的实现方法研究[J]. 量子电子学报, 2022, 39(3): 423-430. |
[4] | 杨祎, 刘雯∗, 阴亚芳, 贺锋涛, 张建磊. 基于改进 Gardner 算法的水下无线光 OQPSK 系统性能分析[J]. 量子电子学报, 2022, 39(3): 467-476. |
[5] | 贾俊亮, 张笑儒, 赵子丹, 张沛, ∗. 用旋转多普勒方法解析矢量涡旋光的偏振特征[J]. 量子电子学报, 2022, 39(2): 286-292. |
[6] | 陈毓锴, 蒲 涛, 郑吉林∗, 李云坤, 郁 楠, 曹 阳. 相移键控量子噪声随机加密系统性能研究[J]. 量子电子学报, 2021, 38(6): 846-854. |
[7] | 苏国瑞, 林浩坤, 蒲 涛∗, 郑吉林, 谭业腾, 牟卫峰. 抑制多用户干扰的串行反馈干扰抑制算法研究[J]. 量子电子学报, 2021, 38(6): 880-888. |
[8] | 张钦伟, 曹连振∗, 刘 霞, 杨 阳, 赵加强, 李英德. 光子纠缠态在 non-Kolmogorov 大气湍流中纠缠退化的研究[J]. 量子电子学报, 2021, 38(4): 496-503. |
[9] | 杨帆, 任国浩. 超快闪烁晶体研究进展[J]. 量子电子学报, 2021, 38(2): 243-258. |
[10] | 王强, 丁雨憧∗, 屈菁菁, 王璐, 董鸿林, 方承丽, 毛世平. 不同厚度Ce:GAGG闪烁晶体性能研究[J]. 量子电子学报, 2021, 38(2): 259-264. |
[11] | 朱旭飞, 陆叶∗, 李传起∗, 武康康, 陈东, 孔一卜. 相干接收机色散补偿FIR滤波器设计[J]. 量子电子学报, 2021, 38(1): 17-24. |
[12] | 张莉, 汪井源, 郑吉林, 张晗, 蒲涛. 大气湍流下圆偏振调制性能分析[J]. 量子电子学报, 2020, 37(6): 737-744. |
[13] | 王英俭, ∗, 时东锋, . 大气对光学成像影响及校正技术[J]. 量子电子学报, 2020, 37(4): 409-417. |
[14] | 薄勇, 卞奇, 彭钦军, 许祖彦, 魏凯, 张雨东, 冯麓, 薛随建. 钠信标激光技术进展[J]. 量子电子学报, 2020, 37(4): 430-446. |
[15] | 黄家应, 朱磊, 杨峰, 饶长辉, ∗. 分布式全息孔径成像系统形位误差校正[J]. 量子电子学报, 2020, 37(4): 456-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||